CH XVI : Intégration sur un segment

I. Intégration de fonctions en escalier sur un segment

I.1. Définition

Définition

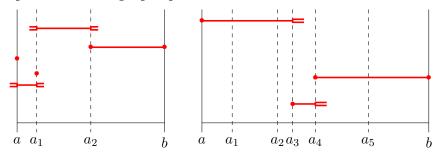
Soit $(a, b) \in \mathbb{R}^2$ vérifiant : a < b.

Soit $f:[a,b]\to\mathbb{R}$.

On dit que la fonction f est **en escalier** sur [a,b] s'il existe une subdivision finie $a = a_0 < a_1 < a_2 < \cdots < x_n = b$ de [a,b] telle que :

pour tout $i \in [0, n-1]$, la fonction f est constante sur a_i, a_{i+1}

Représentations graphiques



Remarque

Si f est une fonction en escalier sur [a, b], alors il existe une subdivision minimale adaptée à f, c'est celle constituée de a, b et des points de discontinuité de f. En effet, si f est en escalier, alors ses points de discontinuité sont en nombre fini.

Proposition 1.

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b.

Soit $f:[a,b]\to\mathbb{R}$.

Supposons que f est en escalier sur [a, b].

- a) La fonction f est continue par morceaux sur [a, b].
- b) La fonction f ne prend qu'un nombre fini de valeurs sur [a,b]. Plus précisément, pour une subdivision de taille n+1, elle prend au plus 2n+1 valeurs.
- c) La fonction f est bornée sur [a, b]

Les fonctions en escalier ne sont pas nécessairement continues sur [a,b] (cf) dessins précédents).

I.2. Ensemble des fonctions en escalier sur [a, b]

Proposition 2.

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b.

Les fonctions en escalier sur [a,b] forment un \mathbb{R} -espace vectoriel.

 $D\'{e}monstration.$

On démontre que c'est un sous-espace vectoriel de $\mathcal{F}([a,b],\mathbb{R})$.

I.3. Définition de l'intégrale de fonctions en escalier sur [a,b]

Définition

Soit $(a, b) \in \mathbb{R}^2$ vérifiant : a < b.

Soit $f:[a,b]\to\mathbb{R}$.

Supposons que f est en escalier sur [a, b].

On note alors $a = a_0 < a_1 < \cdots < a_n = b$ une subdivision adaptée à f.

Le réel
$$I(f) = \sum_{i=0}^{n-1} (a_{i+1} - a_i) f(a_i)$$
 ne dépend pas de la subdivision (adap-

tée à f) choisie.

On l'appelle intégrale de f sur [a,b]. On note : $I(f)=\int_{-\infty}^{b}f(t)\ dt$ ou 2) Positivité : pour toute fonction f en escalier : $\int_{[a,b]} f(t) dt.$

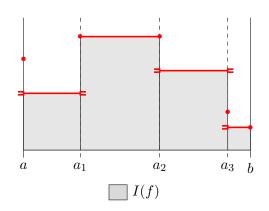
Démonstration.

À faire en utilisant la subdivision minimale adaptée à f.

Remarque

Le réel I(f) ne dépend pas des valeurs de f aux bornes de la subdivision

Représentation graphique



Remarque

On peut modifier une fonction f en escalier en un nombre fini de points. Elle reste alors en escalier.

De plus, son intégrale ne change pas.

Proposition 3.

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b.

1) Linéarité: pour tout couple $(\lambda, \mu) \in \mathbb{R}^2$ et toutes fonctions f et q en escalier sur [a,b]:

$$I(\lambda \cdot f + \mu \cdot g) = \lambda I(f) + \mu I(g)$$

$$\forall x \in [a, b], \ f(x) \geqslant 0 \quad \Rightarrow \quad I(f) \geqslant 0$$

3) Croissance: pour toutes fonctions f et g en escalier sur [a,b]:

$$\forall x \in [a, b], \ f(x) \leqslant g(x) \quad \Rightarrow \quad I(f) \leqslant I(g)$$

4) Inégalité triangulaire : pour toute fonction f en escalier sur [a, b], alors |f| est aussi en escalier sur [a,b] et :

$$\big|I(f)\big| \;\leqslant\; I\big(|f|\big)$$

5) Relation de Chasles : pour toute fonction f en escalier sur [a, b] et tout $c \in [a, b[, alors :$

 \times la fonction $f_{|[a,c]}$ est en escalier sur [a,c],

 \times la fonction $f|_{[c,b]}$ est en escalier sur [c,b].

De plus: $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$

Démonstration.

À faire.

II. Intégration des fonctions continues par morceaux Démonstration. $\mathbf{sur} [a, b]$

II.1. Définition

Définition

Soit a et b deux réels tels que a < b.

Soit $f:[a,b]\to\mathbb{R}$.

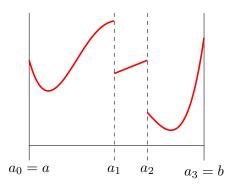
On dit que f est continue par morceaux sur [a, b] si :

Il existe une subdivision $a_0 = a < a_1 < \cdots < a_n = b$ telle que :

- \times f est continue sur $]a_i, a_{i+1}[$,
- \times f admet une limite à droite finie en a_i ,
- \times f admet une limite à gauche finie en a_{i+1} .

On note alors \tilde{f}_i le prolongement par continuité de f sur $[a_i, a_{i+1}]$.

Représentation graphique.



Proposition 4.

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b.

Soit $f:[a,b]\to\mathbb{R}$.

f continue par morceaux sur [a, b] \Rightarrow f bornée sur [a,b]

Supposons que f est continue par morceaux sur [a, b].

- Alors il existe une subdivision finie $a = a_0 < a_1 < \cdots < a_n = b$ adaptée à
- Pour tout $k \in [0, n-1]$, la fonction $f_{|a_k, a_{k+1}|}$ se prolonge en une fonction continue sur le segment $[a_k, a_{k+1}]$. Elle y est donc bornée. On peut alors noter:

$$\lambda_k = \inf_{]a_k, a_{k+1}[} (f) \text{ et } \mu_k = \sup_{]a_k, a_{k+1}[} (f)$$

• On note enfin:

$$M = \max(f(a_0), \dots, f(a_n), \mu_0, \dots, \mu_{n-1})$$

$$m = \min (f(a_0), \dots, f(a_n), \lambda_0, \dots, \lambda_{n-1})$$

Alors: $\forall x \in [a, b], m \leqslant f(x) \leqslant M$.

II.2. Approximation des fonctions continues par morceaux par des fonctions en escalier

Théorème 1.

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b.

Toute fonction continue par morceaux sur [a, b] peut être approchée par des fonctions en escaliers.

Plus précisément, soit $f:[a,b]\to\mathbb{R}$ une fonction continue par morceaux sur [a,b], alors: pour tout $\varepsilon > 0$, il existe $\varphi : [a,b] \to \mathbb{R}$ et $\psi : [a,b] \to \mathbb{R}$ telles que:

 \times les fonctions ϕ et ψ sont en escalier,

- $\times \varphi \leqslant f \leqslant \psi$,
- $\times \psi \varphi \leqslant \varepsilon$.

Lemme 1. (Théorème de Heine)

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b.

Soit $f:[a,b]\to\mathbb{R}$.

Supposons que la fonction f est continue sur le segment [a,b].

Alors la fonction f est uniformément continue sur [a, b]. Autrement dit :

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall (x,y) \in [a,b]^2, \ \left(\left(|x-y| \leqslant \alpha \right) \ \Rightarrow \ \left| f(x) - f(y) \right| \leqslant \varepsilon \right)$$

Démonstration. (Lemme 1)

Admis (repose sur l'utilisation du théorème de Bolzano-Weierstrass ou celui de Borel-Lebesgue).

Démonstration. (Théorème 1)

On effectue la démonstration dans le cas d'une fonction continue sur [a,b](on s'adapte sinon).

Soit f une fonction continue sur [a, b].

- Comme la fonction f est continue sur [a,b], alors elle y est uniformément continue.
 - Soit $\varepsilon > 0$. Il existe donc $\alpha > 0$ tel que :

$$\forall (x,y) \in [a,b]^2, \ \left(|x-y| \leqslant \alpha \ \Rightarrow \ \left|f(x) - f(y)\right| \leqslant \varepsilon\right)$$

- On considère alors une subdivision régulière de [a,b] de pas strictement inférieur à α .
 - Comme $\lim_{n\to +\infty}\frac{b-a}{n}=0$, alors il existe $n_0\in\mathbb{N}^*$ tel que : $\forall n\geqslant n_0$, On considère alors la fonction φ en escalier définie sur [a,b] par :

En particulier : $h = \frac{b-a}{n_0} \le \alpha$. On pose alors, pour tout $k \in [0, n-1]$:

$$a_k = a + k \frac{b-a}{n_0} = a + k h$$

On considère la subdivision $a = a_0 < a_1 < \cdots < a_n$.

• Pour tout $k \in [0, n-1]$, remarquons que, pour toute valeur $\xi_k \in [a_k, a_{k+1}]$, la fonction S suivante est une fonction en escalier sur [a, b] qui fournit une approximation de f:

$$S: x \mapsto \begin{cases} f(\xi_0) & \text{si } x \in [a_0, a_1] \\ f(\xi_1) & \text{si } x \in [a_1, a_2] \\ \vdots & \vdots \\ f(\xi_{n-1}) & \text{si } x \in [a_{n-1}, a_n] \end{cases}$$

Il faut maintenant obtenir une sous-approximation et une sur-approximation de f. On pose alors, pour tout $k \in [0, n-1]$:

$$m_k = \inf_{[a_k, a_{k+1}]} (f)$$
 et $M_k = \sup_{[a_k, a_{k+1}]} (f)$

Comme f est continue sur le SEGMENT $[a_k, a_{k+1}]$, elle y est bornée et atteint ses bornes. Ainsi:

- \times il existe $c_k \in [a_k, a_{k+1}]$ tel que : $m_k = f(c_k)$
- \times il existe $d_k \in [a_k, a_{k+1}]$ tel que : $M_k = f(d_k)$.

De plus : $d_k - c_k \leq a_{k+1} - a_k \leq \alpha$. Ainsi, comme f est uniformément continue sur [a, b]:

$$M_k - m_k = f(d_k) - f(c_k) \leqslant \varepsilon$$

$$\varphi : x \mapsto \begin{cases} f(c_0) = m_0 & \text{si } x \in [a_0, a_1] \\ f(c_1) = m_1 & \text{si } x \in [a_1, a_2] \\ \vdots \\ f(c_{n-1}) = m_{n-1} & \text{si } x \in [a_{n-1}, a_n] \end{cases}$$

On considère de plus la fonction ψ en escalier définie sur [a,b] part :

$$\psi : x \mapsto \begin{cases} f(d_0) = M_0 & \text{si } x \in [a_0, a_1] \\ f(d_1) = M_1 & \text{si } x \in [a_1, a_2] \\ \vdots \\ f(d_{n-1}) = M_{n-1} & \text{si } x \in [a_{n-1}, a_n] \end{cases}$$

Alors:

× pour tout $k \in [0, n-1]$, par définition de φ et ψ , pour tout $x \in [a_k, a_{k+1}]$:

$$\varphi(x) \leqslant f(x) \leqslant \psi(x)$$

Ainsi : $\forall x \in [a, b], \ \varphi(x) \leqslant f(x) \leqslant \psi(x), \ \text{car } a_0 < a_1 < \dots < a_n \ \text{est une}$ subdivision de [a, b].

× pour tout $k \in [0, n-1]$, pour tout $x \in [a_k, a_{k+1}]$:

$$\psi(x) - \varphi(x) = M_k - m_k \leqslant \varepsilon$$

Ainsi : $\forall x \in [a,b], \ \psi(x) - \varphi(x) \leqslant \varepsilon, \ \text{car } a_0 < a_1 < \dots < a_n \ \text{est une}$ subdivision de [a,b].

II.3. Intégrale des fonctions continues par morceaux sur un segment

Théorème 2.

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b.

Soit $f:[a,b]\to\mathbb{R}$.

Supposons que f est continue par morceaux sur [a,b].

On note $\mathcal{E}^-(f)$ l'ensemble des fonctions en escalier sur [a,b] minorant f.

On note $\mathcal{E}^+(f)$ l'ensemble des fonctions en escalier sur [a,b] majorant f.

On note enfin:
$$I^- = \{ \int_a^b \varphi \mid \varphi \in \mathcal{E}^-(f) \}$$
 et $I^+ = \{ \int_a^b \psi \mid \psi \in \mathcal{E}^+(f) \}$.

Alors

- l'ensemble I^- est :
 - \times non vide,
- × majorée.
- l'ensemble I^+ est :
 - \times non vide,
 - $\times \ minor\'ee.$
- On note $\alpha = \sup(I^-)$ et $\beta = \inf(I^+)$. Alors : $\alpha = \beta$. Cette valeur commune est, par définition, l'intégrale de f sur [a,b].

 $D\'{e}monstration.$

- Démontrons que les ensembles I^- et I^+ sont non vides.
- × Puisque f est continue par morceaux sur [a,b], alors elle est bornée. Il existe donc $(m,M) \in \mathbb{R}^2$ tel que :

$$\forall x \in [a, b], \ m \leqslant f(x) \leqslant M$$

- × On en déduit que la fonction constante égale à M appartient à $\mathcal{E}^+(f)$. L'ensemble $\mathcal{E}^+(f)$ est donc non vide. Ainsi l'ensemble I^+ est non vide.
- × De même, la fonction constante égale à m appartient à $\mathcal{E}^-(f)$. L'ensemble $\mathcal{E}^-(f)$ est donc non vide. Ainsi l'ensemble I^- est non vide.

• Démontrons que l'ensemble I^- est majorée par M (b-a). Soit $\varphi \in \mathcal{E}^-(f)$. Alors : $\forall x \in [a,b], \varphi(x) \leqslant f(x) \leqslant M$. En particulier :

$$\forall x \in [a, b], \ \varphi(x) \leqslant M$$

Par croissance de l'intégrale des fonctions en escalier :

$$\int_{a}^{b} \varphi(x) \ dx \leqslant \int_{a}^{b} M \ dx = M(b-a)$$

De même, l'ensemble I^+ est minorée par m(b-a).

- L'ensemble I^- est :
 - × non vide,
 - × majorée.

Il admet donc une borne supérieure. On la note : α .

- L'ensemble I^+ est :
 - × non vide,
 - × minorée.

Il admet donc une borne inférieure. On la note : β .

• Il reste à démontrer : $\alpha=\beta$. Pour cela, on utilise le Théorème 1. Soit $\varepsilon>0$. On note : $\varepsilon'=\frac{\varepsilon}{b-a}$.

D'après le Théorème 1, il existe $\varphi \in \mathcal{E}^-(f)$ et $\psi \in \mathcal{E}^+(f)$ telles que :

$$\psi - \varphi \leqslant \varepsilon'$$

× Par croissance de l'intégrale des fonctions en escalier :

$$\int_{a}^{b} (\psi - \varphi)(t) dt \leq \int_{a}^{b} \varepsilon' dt$$

$$\int_{a}^{b} \psi(t) dt - \int_{a}^{b} \varphi(t) dt$$

(par linéarité de l'intégrale des fonctions en escalier) Or, par définition de α et β :

$$\beta = \inf(I^+) \leqslant \int_a^b \psi(t) \ dt \quad \text{et} \quad \int_a^b \varphi(t) \ dt \leqslant \sup(I^-) = \beta$$

D'où : $\beta - \alpha \leqslant \varepsilon'$.

× De plus : $0 \le \beta - \alpha$. En effet : $\varphi \le f \le \psi$. En particulier :

$$\forall x \in [a, b], \ \varphi(x) \leqslant \psi(x)$$

Par croissance de l'intégrale des fonctions en escalier :

$$\int_{a}^{b} \varphi(x) \ dx \leqslant \int_{a}^{b} \psi(x) \ dx$$

Ainsi $\int_a^b \psi(x) \ dx$ est un majorant de I^- . Or $\alpha = \sup(I^-)$. On en déduit :

$$\alpha \leqslant \int_{a}^{b} \psi(t) dt$$

Ainsi α est un minorant de I^+ . Or : $\beta = \inf(I^+)$. On en déduit : $\alpha \leqslant \beta$.

• On a finalement démontré, **pour tout** $\varepsilon > 0$:

$$0 \leqslant \beta - \alpha \leqslant \varepsilon$$

Ainsi : $\alpha = \beta$.

Remarque

- La nouvelle définition de l'intégrale des fonctions continues par morceaux coïncide (heureusement) avec l'ancienne des fonctions en escalier.
- En effet, soit f une fonction en escalier sur [a, b]. Elle est donc continue par morceaux sur [a, b]. Ainsi : $\times f \in \mathcal{E}^+(f)$,

$$\times f \in \mathcal{E}^-(f)$$
.

On obtient alors : $\int_{[a,b]} f \in I^+ \cap I^-$. D'où :

$$\times \int_{[a,b]} f = \max(I^{-}) = \alpha$$
$$\times \int_{[a,b]} f = \min(I^{+}) = \beta$$

Proposition 5.

Soit $(a, b) \in \mathbb{R}^2$ vérifiant : a < b.

1) Linéarité : pour tout $(\lambda, \mu) \in \mathbb{R}^2$ et toutes fonctions f et g continues par morceaux sur [a, b] :

$$\int_{a}^{b} (\lambda \cdot f + \mu \cdot g)(t) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

2) Positivité : pour toute fonction f continue par morceaux sur [a,b] :

$$\forall x \in [a, b], \ f(x) \geqslant 0 \quad \Rightarrow \quad \int_a^b f(t) \ dt \geqslant 0$$

3) Croissance : pour toutes fonctions f et g continues par morceaux sur $[\bar{a},\bar{b}]$:

$$\forall x \in [a, b], \ f(x) \leqslant g(x) \quad \Rightarrow \quad \int_a^b f(t) \ dt \leqslant \int_a^b g(t) \ dt$$

4) Inégalité triangulaire : pour toute fonction f continue par morceaux sur [a,b], alors |f| est aussi continue par morceaux sur [a,b] et :

$$\left| \int_a^b f(t) \ dt \right| \ \leqslant \ \int_a^b \ \left| f(t) \right| \ dt$$

- 5) Relation de Chasles: pour toute fonction f continue par morceaux sur [a,b] et tout $c \in]a,b[$, alors:
 - \times la fonction $f|_{[a,c]}$ est continue par morceaux sur [a,c],
 - \times la fonction $f_{[c,b]}$ est continue par morceaux sur [c,b].

De plus:
$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$$

6) Invariance de l'intégrale lorsqu'on modifie la fonction f en un nombre fini de points

7)
$$\left| \begin{array}{c} f \ continue \ sur \ [a,b] \\ \forall x \in [a,b], \ f(x) \geqslant 0 \end{array} \right\} \ \Rightarrow \ \left(\int_a^b \ f(t) \ dt = 0 \ \Rightarrow \ f = 0_{\mathcal{F}([a,b],\mathbb{R})} \right)$$

8) Valeur moyenne - Inégalité de la moyenne : pour toute fonction f continue par morceaux sur [a,b] :

$$\forall x \in [a, b], \ m \leqslant f(x) \leqslant M \quad \Rightarrow \quad m \leqslant \frac{1}{b - a} \int_a^b f(t) \ dt \leqslant M$$

La quantité $\frac{1}{b-a} \int_a^b f(t) dt$ est appelée valeur moyenne de f sur [a,b].

Conséquence: pour toute fonction f continue sur [a,b], si $m = \inf_{[a,b]} (f)$ et $M = \sup_{[a,b]} (f)$, alors: f([a,b]) = [m,M] et:

il existe alors
$$\xi \in [a,b]$$
 tel que : $f(\xi) = \frac{1}{b-a} \int_{[a,b]} f$

Démonstration.

1) Démontrons seulement que, pour toutes fonctions f et g continues par morceaux sur [a, b]:

$$\int_{a}^{b} (f+g)(t) dt = \int_{a}^{b} f(t) dt + \int_{a}^{b} g(t) dt$$

Soient f et g deux fonctions continues par morceaux sur [a, b]. Alors : f + g est continue par morceaux sur [a, b].

× Soient $\varphi_1 \in \mathcal{E}^-(f)$ et $\varphi_2 \in \mathcal{E}^-(g)$. Alors : $\varphi_1 + \varphi_2 \in \mathcal{E}^-(f+g)$. De plus, par linéarité de l'intégrale des fonctions en escalier :

$$\int_{a}^{b} (\varphi_{1} + \varphi_{2})(t) dt = \int_{a}^{b} \varphi_{1}(t) dt + \int_{a}^{b} \varphi_{2}(t) dt$$

Ainsi:

$$\int_a^b (\varphi_1 + \varphi_2)(t) dt - \int_a^b \varphi_2(t) dt = \int_a^b \varphi_1(t) dt$$

On en déduit :

$$\int_a^b (\varphi_1 + \varphi_2)(t) \ dt - \int_a^b \varphi_2(t) \ dt \leqslant \sup \left(I^-(f) \right)$$

D'où:

$$\int_a^b (\varphi_1 + \varphi_2)(t) \ dt - \sup \left(I^-(f) \right) \leqslant \int_a^b \varphi_2(t) \ dt$$

On obtient:

$$\int_{a}^{b} (\varphi_1 + \varphi_2)(t) dt - \sup (I^{-}(f)) \leq \sup (I^{-}(g))$$

Donc:

$$\int_a^b (\varphi_1 + \varphi_2)(t) dt \leq \sup (I^-(f)) + \sup (I^-(g))$$

Enfin:

$$\sup (I^{-}(f+g)) \leq \sup (I^{-}(f)) + \sup (I^{-}(g))$$

Autrement dit:

$$\int_a^b (f+g)(t) dt \leqslant \int_a^b f(t) dt + \int_a^b g(t) dt$$

× Soient $\psi_1 \in \mathcal{E}^+(f)$ et $\psi_2 \in \mathcal{E}^+(g)$. Alors : $\psi_1 + \psi_2 \in \mathcal{E}^+(f+g)$. De plus, par linéarité de l'intégrale des fonctions en escalier :

$$\int_{a}^{b} (\psi_{1} + \psi_{2})(t) dt = \int_{a}^{b} \psi_{1}(t) dt + \int_{a}^{b} \psi_{2}(t) dt$$

Ainsi:

$$\int_{a}^{b} (\psi_{1} + \psi_{2})(t) dt - \int_{a}^{b} \psi_{2}(t) dt = \int_{a}^{b} \psi_{1}(t) dt$$

On en déduit :

$$\int_{a}^{b} (\psi_{1} + \psi_{2})(t) dt - \int_{a}^{b} \psi_{2}(t) dt \geqslant \inf (I^{+}(f))$$

D'où:

$$\int_{a}^{b} (\psi_{1} + \psi_{2})(t) dt - \inf (I^{+}(f)) \geqslant \int_{a}^{b} \psi_{2}(t) dt$$

On obtient:

$$\int_{a}^{b} (\psi_1 + \psi_2)(t) dt - \inf \left(I^+(f) \right) \geqslant \inf \left(I^+(g) \right)$$

Donc:

$$\int_a^b (\psi_1 + \psi_2)(t) dt \geqslant \inf \left(I^+(f) \right) + \inf \left(I^+(g) \right)$$

Enfin:

$$\inf (I^+(f+g)) \geqslant \inf (I^+(f)) + \inf (I^+(g))$$

Autrement dit :

$$\int_a^b (f+g)(t) dt \geqslant \int_a^b f(t) dt + \int_a^b g(t) dt$$

Finalement: $\int_a^b (f+g)(t) dt = \int_a^b f(t) dt + \int_a^b g(t) dt.$

III. Primitives et intégrales de fonctions continues $\operatorname{sur}\ [a,b]$

III.1. Une première proposition

Proposition 6.

Soit f une fonction continue par morceaux sur un intervalle I.

Soit $x_0 \in I$.

L'application suivante est continue sur I:

 $F_0 : I \to \mathbb{R}$ $x \mapsto \int_{x_0}^x f(t) dt$

Démonstration.

Soit $x_1 \in I$. Démontrons que F_0 est continue en x_1 .

On choisit ensuite $\alpha > 0$ tel que : $[x_1 - \alpha_1, x_1 + \alpha_1] \subset I$ (on adapte si x_1 est une borne de I).

- La fonction f est continue par morceaux sur le segment $[x_1 \alpha_1, x_1 + \alpha_1]$. Elle y est donc bornée. On note alors : $M_1 = \sup_{[x_1 - \alpha_1, x_1 + \alpha_1]} (|f|)$.
- Soit $\varepsilon > 0$. Soit $x \in [x_1 \alpha_1, x_1 + \alpha_1]$.

$$F_0(x) - F_0(x_1) = \int_{x_0}^x f(t) dt - \int_{x_0}^{x_1} f(t) dt = \int_{x_1}^x f(t) dt$$

Ainsi, par inégalité triangulaire, deux cas se présentent :

 \times si $x_1 < x$, alors:

$$|F_0(x) - F_0(x_1)| \le \int_{x_1}^x |f(t)| dt \le \int_{x_1}^x M dt$$

 \times si $x_1 > x$, alors:

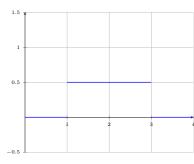
$$|F_0(x) - F_0(x_1)| \le \int_x^{x_1} |f(t)| dt \le \int_x^{x_1} M dt$$

• On en déduit :

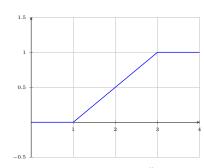
$$|F_0(x) - F_0(x_1)| \le M_1 |x - x_1|$$

La fonction F_0 est donc M_1 -lipschitzienne sur $[x_1 - \alpha_1, x_1 + \alpha_1]$. Elle y est donc continue. En particulier, elle est continue en x_1 .

Exemple



Courbe de f



Courbe de
$$F_0: x \mapsto \int_0^x f(t) dt$$

III.2. Théorème fondamental

Définition

П

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

- On appelle **primitive de** f sur I toute fonction $F:I\to\mathbb{R}$ qui vérifie :
 - a) F est dérivable sur I.
 - b) F' = f.

Théorème 3.

Soit $f: I \to \mathbb{R}$ une fonction continue sur I.

Soit F une primitive de f sur I.

- 1) G est une primitive de f sur $I \Rightarrow \exists \lambda \in \mathbb{R}, \ \forall x \in I, \ G(x) = F(x) + \lambda$
- 2) Soit $c \in I$. Il existe une unique primitive de f sur I s'annulant en c. C'est la fonction $x \mapsto F(x) F(c)$.

 $D\'{e}monstration.$

- 1) Si G est une primitive de f sur I alors, par définition, G' = f = F'. On en déduit que : F' G' = 0 et donc (F G)' = 0. Ainsi, F G est une fonction constante : $\exists \lambda \in \mathbb{R}$, $F G = \lambda$.
- 2) Si de plus G s'annule en c, alors $G(c) = F(c) + \lambda = 0$ et donc $\lambda = -F(c)$

Théorème 4.

Toute fonction continue sur un intervalle I admet une primitive sur cet intervalle.

Plus précisément, pour toute fonction f continue sur un intervalle I, pour

 $tout \ c \in I, \ la \ fonction$

f sur I. C'est même l'unique primitive de f sur I qui s'annule en c.

Démonstration.

Démontrons que H est dérivable sur I et de dérivée f. Soit $x_0 \in I$.

• Pour tout $x \in I$:

$$H(x) - H(x_0) = \int_c^x f(t) dt - \int_c^{x_0} f(t) dt$$

$$= \int_{x_0}^x f(t) dt \qquad (par relation de Chasles)$$

• Ainsi:

$$H(x) - H(x_0) - (x - x_0) f(x_0)$$

$$= \int_{x_0}^x f(t) dt - \int_{x_0}^x f(x_0) dt$$

$$= \int_{x_0}^x (f(t) - f(x_0)) dt \qquad (par linéarité de l'intégrale)$$

On en déduit, pour tout $x \neq x_0$:

$$\frac{H(x) - H(x_0)}{x - x_0} - f(x_0) = \frac{1}{x - x_0} \int_{x_0}^x f(t) - f(x_0) dt$$

• Soit $\varepsilon > 0$. Comme la fonction f est continue en x_0 , il existe $\alpha > 0$ tel que :

$$|x - x_0| \leqslant \alpha \implies |f(x) - f(x_0)| \leqslant \varepsilon$$

Supposons alors : $|x - x_0| \le \alpha$. Pour tout t dans le segment d'extrémités x_0 et $x : |t - x_0| \le |x - x_0| \le \alpha$. Donc :

$$|f(t) - f(x_0)| \leq \varepsilon$$

On en déduit, dans le cas $x > x_0$ (le cas $x < x_0$ se traite de façon similaire) :

$$\left| \frac{H(x) - H(x_0)}{x - x_0} - f(x_0) \right|$$

$$= \frac{1}{|x - x_0|} \left| \int_{x_0}^x f(t) - f(x_0) dt \right|$$

$$\leqslant \frac{1}{|x - x_0|} \int_{x_0}^x \left| f(t) - f(x_0) \right| dt \qquad \begin{array}{l} (par \ in\acute{e}galit\acute{e} \\ triangulaire) \end{array}$$

$$\leqslant \frac{1}{|x - x_0|} \int_{x_0}^x \varepsilon dt \qquad (car |x - x_0| \leqslant \alpha)$$

$$\leqslant \varepsilon \frac{|x - x_0|}{|x - x_0|} = \varepsilon$$

Ainsi : $\lim_{x\to x_0} \frac{H(x)-H(x_0)}{x-x_0} - f(x_0) = 0$. On en déduit que H est dérivable en x_0 et : $H'(x_0) = f(x_0)$. La fonction H est donc une primitive de F.

• Enfin, on a évidemment : H(c) = 0. Montrons que H est l'**unique** primitive de f qui s'annule en c.

On procède par l'absurde.

Supposons qu'il existe $G: I \to \mathbb{R}$:

- \times une primitive de f sur I,
- \times qui s'annule en c,
- \times distincte de H.

D'après le Théorème 3 1), il existe $\lambda \in \mathbb{R}$ tel que :

$$\forall x \in I, \ G(x) = H(x) + \lambda$$

En particulier : $G(c) = H(c) + \lambda$. D'où : $\lambda = 0$.

Ainsi : $\forall x \in I, G(x) = H(x)$.

Absurde!

III.3. Conséquences du théorème fondamental dans le cas de Remarque fonctions continues

Proposition 7.

Soit I un intervalle de \mathbb{R} .

Soit f une fonction continue sur I.

Soit $c \in I$.

Soit F une primitive quelconque de f sur I.

$$\forall x \in I, \quad \int_{c}^{x} f(t) dt = F(x) - F(c)$$

ou encore:

$$\forall x \in I, \quad F(x) = F(c) + \int_{c}^{x} f(t) dt$$

Proposition 8.

Soit I un intervalle de \mathbb{R} . Soit $c \in I$.

Soit h une fonction de classe C^1 sur I.

$$\forall x \in I, \quad h(x) = h(c) + \int_{c}^{x} h'(t) dt$$

Retour à l'intuition

• Si f est continue et positive (et si A_f existe!), alors A_f est une primitive de f sur [a,b]. Ainsi, on pourra penser l'intégrale de f sur [a,b] comme l'aire de la surface définie sous la courbe \mathscr{C}_f entre a et b.

• La notion d'intégrale sur un segment est indépendante de la primitive choisie. En effet, si F et G sont deux primitives de f, alors pour un $\lambda \in \mathbb{R}$:

$$F = G + \lambda$$

Ainsi: $F(b) - F(a) = (G(b) + \lambda) - (G(a) + \lambda) = G(b) - G(a)$

• La lettre t de la définition est une variable muette. On notera donc, sans distinction:

$$\int_a^b f(t) dt \text{ ou } \int_a^b f(x) dx \text{ ou } \int_a^b f(u) du \dots$$

• Si f n'est que continue par morceaux sur I, alors la fonction $F: x \mapsto$ $\int_{-\infty}^{\infty} f(t) dt$ est **continue** sur I.

En fait, avec une démonstration tout à fait similaire à celle du Théorème 4, on peut démontrer :

- \times la fonction F est dérivable en tout point x_0 où f est continue.
- \times la fonction F est dérivable à droite et à gauche en tout point de I avec :

$$F'_g(x_0) = \lim_{x \to x_0^-} f(x)$$
 et $F'_d(x_0) = \lim_{x \to x_0^+} f(x)$

Propriété

Soit $f: I \to \mathbb{R}$ une fonction continue sur un intervalle I.

Soit $(a,b) \in I^2$ et soit $\lambda \in \mathbb{R}$. (on ne suppose pas ici a < b)

1)
$$\int_{a}^{b} 0 dt = 0$$
2)
$$\int_{a}^{b} \lambda f(t) dt = \lambda \int_{a}^{b} f(t) dt$$
3)
$$\int_{a}^{a} f(t) dt = 0$$
4)
$$\int_{b}^{a} f(t) dt = -\int_{a}^{b} f(t) dt = \int_{a}^{b} -f(t) dt$$

Démonstration.

Soit F une primitive de f sur I. Par définition, $\int_a^b f(t) dt = F(b) - F(a)$.

- 1) Dans ce cas, F' = f = 0 donc la fonction F est constante et F(b) = F(a).
- 2) λF est une primitive de λf puisque : $(\lambda F)' = \lambda F' = \lambda f$. Ainsi, $\int_a^b \lambda f(t) dt = [\lambda F]_a^b = \lambda F(b) - \lambda F(a)$.
- 3) Dans ce cas, $\int_{a}^{a} f(t) dt = F(a) F(a) = 0$.

4) On a:
$$\int_{b}^{a} f(t) dt = F(a) - F(b) = -(F(b) - F(a)) = -\int_{a}^{b} f(t) dt$$

Retour à l'intuition

Si f est une fonction continue sur [a,b], la propriété 2) permet d'affirmer que : $\int_a^b f(t) dt = -\int_a^b -f(t) dt$.

Par analogie avec cette propriété, on définit l'aire sous la courbe entre a et b d'une fonction **continue** doit être pensée comme une aire orientée :

- \times cette aire est positive si f positive.
- \times cette aire est négative si f négative. (et c'est l'opposé de l'aire définie par -f, fonction positive)

Exemple

•
$$\int_{3}^{8} 4 dt = [4t]_{3}^{8} = (4 \times 8 - 4 \times 3) = 4 \times (8 - 3) = 20$$

•
$$\int_0^1 (2t^2 + 5t - 1) dt = \left[\frac{2}{3} t^3 + \frac{5}{2} t^2 - t \right]_0^1 = \frac{13}{6}$$

•
$$\int_0^1 \frac{1}{t+1} dt = \left[\ln(t+1) \right]_0^1 = \ln 2 - \ln 1 = \ln 2$$

•
$$\int_0^1 \frac{t}{t+1} dt = \int_0^1 \left(1 - \frac{1}{t+1}\right) dt = \left[t - \ln(t+1)\right]_0^1 = 1 + \ln 2$$

•
$$\int_0^1 e^{2t} dt = \left[\frac{1}{2} e^t\right]_0^1 = \frac{1}{2} (e^1 - e^0) = \frac{1}{2} (e - 1)$$

•
$$\int_0^1 t e^{-t^2} dt = \int_0^1 -\frac{1}{2} (-2t e^{-t^2}) dt = \left[-\frac{1}{2} e^{-t^2} \right]_0^1 = -\frac{1}{2} \left(\frac{1}{e} - 1 \right)$$

III.4. Intégrales fonctions de leurs bornes

Théorème 5.

Soit $f: I \to \mathbb{R}$ une fonction continue sur un intervalle I et $c \in I$.

1) En particulier, cette fonction H est de classe C^1 et de dérivée f:

$$H'=f$$

2) Si de plus $u:J\to I$ et $v:J\to I$ sont deux fonctions dérivables sur l'intervalle J, alors les fonctions

$$H_1: x \mapsto \int_c^{v(x)} f(t) dt, \quad H_2: x \mapsto \int_{u(x)}^c f(t) dt, \quad H_3: x \mapsto \int_{u(x)}^{v(x)} f(t) dt$$

sont dérivables sur J.

Les dérivées de ces fonctions sont :

$$H'_{1}(x) = v'(x)f(v(x)) \qquad H'_{2}(x) = -u'(x)f(u(x))$$

$$H'_{3}(x) = v'(x) \times f(v(x)) - u'(x) \times f(u(x))$$

Démonstration.

Soit F une primitive de f sur I.

1) Par définition, $\int_{c}^{x} f(t) dt = F(x) - F(c)$.

La fonction $H: x \mapsto F(x) - F(c)$ est dérivable sur I car F l'est.

De plus, on a : H' = F' = f.

H est donc bien une primitive de f.

De plus, elle s'annule en c puisque H(c) = F(c) - F(c) = 0.

2) • Remarquons tout d'abord que : $\int_{c}^{v(x)} f(t) dt = H(v(x)).$

La fonction $H \circ v$ est dérivable sur J car elle est la composée $H \circ v$ de :

- \times v :
 - dérivable sur J
 - telle que : $v(J) \subset I$
- \times H, dérivable sur I

Par la formule de dérivation d'une composée, on obtient :

$$\forall x \in J, \quad (H \circ v)'(x) = H'(v(x)) \times v'(x) = f(v(x)) \times v'(x)$$

• De même, $\int_{u(x)}^{c} f(t) dt = - \int_{c}^{u(x)} f(t) dt = -H(u(x)).$

La fonction $H \circ u$ est dérivable sur J en tant que fonction composée.

$$\forall x \in J, \quad (H \circ u)'(x) = H'(u(x)) \times u'(x) = f(u(x)) \times u'(x)$$

3) Utilise la relation de Chasles (cf plus loin).

$$\left(\int_{u(x)}^{v(x)} f(t) \ dt = \int_{u(x)}^{c} f(t) \ dt + \int_{c}^{v(x)} f(t) \ dt \dots \right)$$

MÉTHODO Étude d'une intégrale fonction de ses bornes

Pour étudier une intégrale fonction de ces bornes $G: x \mapsto \int_{u(x)}^{v(x)} f(t) \ dt$, où

f est continue (resp. de classe \mathcal{C}^1) sur I, on suivra le schéma suivant.

1) On introduit une primitive F de f: « La fonction f est continue (resp. de classe C^1) sur I, donc elle admet une primitive F de classe C^1 (resp. de classe C^2) sur I. »

2) On exprime G en fonction de F:

$$\forall x \in J, \ G(x) = \int_{u(x)}^{v(x)} f(t) \ dt = [F(t)]_{u(x)}^{v(x)} = F(v(x)) - F(u(x))$$

- 3) On justifie la dérivabilité de G. La fonction G est dérivable sur J car la fonction F est de classe C^1 (donc dérivable) sur I et les fonctions u et v sont dérivables sur J.
- 4) Enfin on dérive G grâce à la formule de dérivation d'une composée :

$$\forall x \in J, G'(x) = v'(x) F'(v(x)) - u'(x) F'(u(x)) = v'(x) f(v(x)) - u'(x) f(u(x))$$

Exercice

Pour chaque entier n on définit la fonction f_n par :

$$\forall x \in [n, +\infty[, f_n(x) = \int_n^x e^{\sqrt{t}} dt$$

Montrer que f_n est de classe C^1 sur $[n, +\infty[$ puis déterminer $f'_n(x)$ pour tout x de $[n, +\infty[$. Donner le sens de variation de f_n .

Démonstration.

Soit $n \in \mathbb{N}$.

- La fonction $t \mapsto e^{\sqrt{t}}$ est continue sur \mathbb{R} donc sur $[n, +\infty[$.
- La fonction f_n est la primitive, qui s'annule en n de la fonction $t \mapsto e^{\sqrt{t}}$. On en déduit que f_n est \mathcal{C}^1 sur $[n, +\infty[$ et que :

$$\forall x \in [n, +\infty[, f_n'(x) = e^{\sqrt{x}} > 0]$$

Ainsi, f_n est strictement croissante sur $[n, +\infty[$.

Exercice 1

Démontrer que les fonctions suivantes sont dérivables sur \mathbb{R} et calculer leur dérivée.

1.
$$G: x \mapsto \int_{2x}^{x^2 - x} e^{-t} dt$$

2.
$$H: x \mapsto \int_0^{x^2} \cos(t) \ dt$$

IV. Retour sur quelques propriétés de l'intégrale sur un segment

IV.1. Techniques de majoration

Théorème 6.

Soient $f, g: I \to \mathbb{R}$ continues sur un intervalle I.

Soit $(a,b) \in I^2$ tel que a < b.

Alors:

$$f \leqslant g \ sur \ [a,b] \quad \Rightarrow \quad \int_a^b \ f(t) \ dt \leqslant \int_a^b \ g(t) \ dt$$

$D\'{e}monstration.$

On applique le théorème précédent à la fonction $g-f\geqslant 0$. En intégrant sur

$$[a,b] \ (b \geqslant a), \text{ on a } : \int_a^b (g-f)(t) \ dt \ \geqslant \ 0 \text{ et } \int_a^b \ g(t) \ dt \ \geqslant \ \int_a^b \ f(t) \ dt. \quad \Box$$

Remarque

Cette propriété signifie que $Int_{a,b}$ est une application croissante.

$$f \leqslant g \Rightarrow \operatorname{Int}_{a,b}(f) \leqslant \operatorname{Int}_{a,b}(g)$$

Exemple

Pour $n \in \mathbb{N}$, on note $J_n = \int_0^1 \frac{x^n}{1+x^2}$. Montrer que $J_n \to 0$.

Soit $x \in [0, 1]$. Comme : $0 \le \frac{1}{1 + x^2} \le 1$ et $x^n \ge 0$, on a :

$$0 \leqslant \frac{x^n}{1+x^2} \leqslant x^n$$

et donc, en intégrant sur le segment [0,1] $(1 \ge 0)$, on obtient :

$$\int_0^1 0 \, dx \leqslant \int_0^1 \frac{x^n}{1+x^2} \, dx \leqslant \int_0^1 x^n \, dx = \left[\frac{x^{n+1}}{n+1} \right]_0^1$$
ainsi $0 \leqslant J_n \leqslant \frac{1}{n+1}$

Par le théorème d'encadrement, (J_n) est convergente et de limite $\ell = 0$.

Exercice. (suite)

Pour chaque entier n on définit la fonction f_n par :

$$\forall x \in [n, +\infty[, f_n(x) = \int_n^x e^{\sqrt{t}} dt$$

- **b)** En minorant $f_n(x)$, établir que $\lim_{x \to +\infty} f_n(x) = +\infty$.
- c) En déduire que pour chaque entier naturel n, il existe un unique réel, noté u_n , élément de $[n, +\infty[$, tel que $f_n(u_n) = 1$.
- d) Montrer que $\lim_{n\to+\infty} u_n = +\infty$.

Démonstration.

b) Soit $t \in [n, +\infty[$. On a alors $t \ge n$.

Par croissance de la fonction racine sur \mathbb{R}^+ puis par croissance de la fonction exponentielle, on a : $e^{\sqrt{t}} \ge e^{\sqrt{n}}$.

Soit $x \ge n$. En intégrant sur le segment [n, x] $(x \ge n)$, on obtient :

$$f_n(x) = \int_n^x e^{\sqrt{t}} dt \geqslant \int_n^x e^{\sqrt{n}} dt = (x-n) e^{\sqrt{n}}$$

Comme $\lim_{x\to+\infty} (x-n) e^{\sqrt{n}} = +\infty$, on en déduit que $\lim_{x\to+\infty} f_n(x) = +\infty$.

- c) La fonction f_n est:
 - \times continue sur $[n, +\infty[$,
 - \times strictement croissante sur $[n, +\infty[$.

Elle réalise donc une bijection de $[n, +\infty[$ sur $f_n([n, +\infty[)$. Or :

$$f_n([n, +\infty[) = [f_n(n), \lim_{x \to +\infty} f_n(x)] = [0, +\infty[$$

Comme $1 \in [0, +\infty[$, l'équation $f_n(x) = 1$ admet une unique solution, notée u_n , dans $[n, +\infty[$.

d) D'après la question précédente, $u_n \ge n$. Comme $\lim_{n \to +\infty} n = +\infty$, on a $\lim_{n \to +\infty} u_n = +\infty$. Théorème 7. (Inégalité triangulaire)

Soit $f: I \to \mathbb{R}$ continue sur un intervalle I.

Soit $(a,b) \in I^2$ tel que a < b.

$$\left| \int_{a}^{b} f(t) dt \right| \leqslant \int_{a}^{b} |f(t)| dt$$

 $D\'{e}monstration.$

On doit démontrer que : $\left| \int_a^b f(t) dt \right| \leqslant \int_a^b |f(t)| dt$, ce qui équivaut à :

$$-\int_a^b |f(t)| dt \leqslant \int_a^b f(t) dt \leqslant \int_a^b |f(t)| dt$$

Considérons alors les fonctions $f^+ = \frac{|f| + f}{2}$ et $f^- = \frac{|f| - f}{2}$.

- Comme $|f| \ge f$ et $|f| \ge -f$, les fonctions f^+ et f^- sont positives.
- De plus, $|f| = f^+ + f^-$ et $f = f^+ f^-$.

Revenons alors à la double inégalité. On commence par remplacer f et |f| par leur valeur en fonction de f^+ et f^- .

(i) L'inégalité de gauche équivaut à :

$$-\int_{a}^{b} (f^{+}(t) + f^{-}(t)) dt \leq \int_{a}^{b} (f^{+}(t) - f^{-}(t)) dt$$
et à :
$$-\int_{a}^{b} f^{+}(t) dt - \int_{a}^{b} f(t) dt \leq \int_{a}^{b} f^{+}(t) dt - \int_{a}^{b} f(t) dt$$
i.e. :
$$0 \leq 2 \int_{a}^{b} f^{+}(t) dt$$

(ii) De même, l'inégalité de droite équivaut à : $-2\int_a^b f^-(t) dt \leq 0$

Ces deux inégalités sont vérifiées puisque f^+ et f^- sont positives.

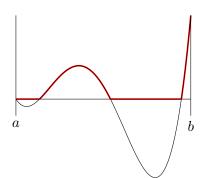
Remarque

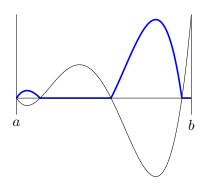
Les fonctions f^+ et f^- sont appelées réciproquement partie positive et partie négative de la fonction f. Notez que ces deux fonctions sont positives.

•
$$f^+: x \mapsto \max(f(x), 0) = \begin{cases} f(x) & \text{si } f(x) > 0 \\ 0 & \text{sinon} \end{cases}$$

•
$$f^-: x \mapsto -\min(f(x), 0) = \begin{cases} -f(x) & \text{si } f(x) < 0 \\ 0 & \text{sinon} \end{cases}$$

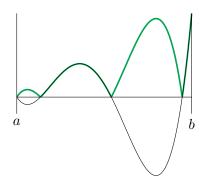
Représentation graphique.





Partie positive de f

Partie négative de f



Valeur absolue de f

Théorème 8.

Soit $f: I \to \mathbb{R}$ <u>continue</u> sur un intervalle I. Soit $(a,b) \in I^2$ tel que a < b.

$$(b-a) \min_{[a,b]} f \leqslant \int_a^b f(t) dt \leqslant (b-a) \max_{[a,b]} f$$

Démonstration.

f est continue sur le segment [a,b]. Elle est donc bornée et atteint ses bornes. Ainsi, $\min_{[a,b]} f$ et $\min_{[a,b]} f$ existent bien. Soit $t \in [a,b]$. On a :

$$\min_{[a,b]} f \leqslant f(t) \leqslant \max_{[a,b]} f$$

et donc, en intégrant sur [a,b] $(b \ge a)$, on obtient :

$$\int_a^b \left(\min_{[a,b]} f\right) dt \leqslant \int_a^b f(t) dt \leqslant \int_a^b \left(\max_{[a,b]} f\right) dt$$
 ainsi
$$(b-a) \min_{[a,b]} f \leqslant \int_a^b f(t) dt \leqslant (b-a) \max_{[a,b]} f \qquad \Box$$

Application

• Si $f:[a,b]\to\mathbb{R}$ est continue et décroissante sur [a,b], on a :

$$\min_{[a,b]} f = f(b) \quad \text{et} \quad \max_{[a,b]} f = f(a)$$

En reprenant la démonstration précédente, on obtient :

$$f(b) \leqslant f(t) \leqslant f(a)$$

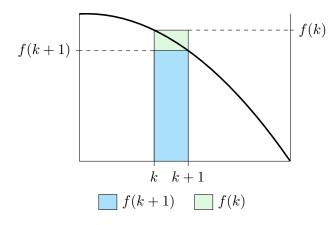
et donc en intégrant sur [a, b] $(b \ge a)$, on obtient :

$$\int_a^b f(b) dt \leqslant \int_a^b f(t) dt \leqslant \int_a^b f(a) dt$$
ainsi $(b-a) f(b) \leqslant \int_a^b f(t) dt \leqslant (b-a) f(a)$

• Ainsi, si l'on considère un segment de longueur 1, de type [k, k+1] (avec V. Techniques de calcul des intégrales $k \in \mathbb{N}$), on obtient que :

$$f(k+1) \leqslant \int_{k}^{k+1} f(t) dt \leqslant f(k)$$

On retrouve le schéma (cas décroissant) de la démonstration du théorème ??.



Théorème 9.

Soit $f: I \to \mathbb{R}$ continue sur un intervalle I.

Soit $(a,b) \in I^2$ tel que a < b.

$$\left| \int_a^b f(t) dt \right| \leqslant \int_a^b |f(t)| dt \leqslant (b-a) \max_{[a,b]} |f|$$

Démonstration.

Combinaison des résultats du théorème 7 et 8 sachant que $x \mapsto |f(x)|$ est conitrue sur [a, b] (comme composée de fonctions continues ...). П

V.1. Calcul de primitives « à vue »

Principe.

Il s'agit ici de calculer une intégrale en devinant une de ses primitives. Autrement dit, il faut être capable de voir la fonction f à intégrer comme la dérivée d'une autre fonction.

cf Chapitre VI Section I.4

V.2. Intégration par parties

cf Chapitre VI Section I.4

V.3. Changement de variable

V.3.a) Calculs d'intégrales par changement de variable

cf Chapitre VI Section I.4

V.3.b) Changement de variable et parité

Théorème 10.

Soit $f: [-a, a] \to \mathbb{R}$ <u>continue</u> sur [-a, a].

1) Si f est paire:
$$\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(u) du$$

2) Si f est impaire:
$$\int_{-a}^{a} f(t) dt = 0$$

Démonstration.

Par la relation de Chasles, on a :
$$\int_{-a}^{a} f(t) dt = \int_{-a}^{0} f(t) dt + \int_{0}^{a} f(t) dt$$

1) On effectue le changement de variable u = -t

$$\begin{vmatrix} u = -t & (\text{donc } t = -u) \\ \hookrightarrow du = -dt & \text{et} & dt = -du \\ \bullet & t = -a \implies u = -(-a) = a \\ \bullet & t = 0 \implies u = -0 = 0 \end{vmatrix}$$

On obtient ainsi:

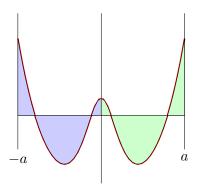
$$\int_{-a}^{0} f(t) dt = \int_{a}^{0} -f(-u) du = \int_{a}^{0} -f(u) du = \int_{0}^{a} f(u) du$$

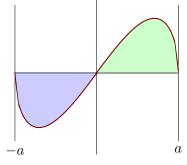
(la deuxième égalité est obtenue par parité de la fonction f)

2) À l'aide du changement de variable u = -t, on obtient :

$$\int_{-a}^{0} f(t) dt = \int_{a}^{0} -f(-u) du = \int_{a}^{0} f(u) du = -\int_{0}^{a} f(u) du$$

Représentation graphique.





Cas d'une fonction paire

Cas d'une fonction impaire $+ \square = 0$

Exemple

Calculer l'intégrale : $\int_{-\sqrt{2}}^{\sqrt{2}} x \sqrt{4 - x^2} dx.$

Considérons la fonction $f: x \mapsto x \sqrt{4-x^2}$

- La fonction f est définie et continue sur $[-\sqrt{2}, \sqrt{2}]$. On peut donc considérer son intégrale sur le segment $[-\sqrt{2}, \sqrt{2}]$.
- Démontrons que f est impaire. Soit $x \in [-\sqrt{2}, \sqrt{2}]$.

$$f(-x) = -x \sqrt{4 - (-x)^2} = -x \sqrt{4 - x^2} = -f(x)$$

On en conclut, par le théorème précédent, que : $\int_{-\sqrt{2}}^{\sqrt{2}} x \sqrt{4-x^2} dx = 0$.

V.3.c) Changement de variable et périodicité

Théorème 11.

Soit $f: \mathbb{R} \to \mathbb{R}$ continue sur \mathbb{R} .

Soit $T \in \mathbb{R}_{+}^{*}$.

Supposons que f est T-périodique sur \mathbb{R} .

Pour tout $(a,b) \in \mathbb{R}^2$:

$$\int_a^b f(u) \ du = \int_{a+T}^{b+T} f(t) \ dt$$

$$D'o\dot{u}:$$

$$\int_a^{a+T} f(t) dt = \int_b^{b+T} f(t) dt$$

 $D\'{e}monstration.$

Il suffit d'effectuer le changement de variable : u = t - T

VI. Méthodes de calcul approché des intégrales

VI.1. Somme de Riemann, méthode des rectangles

VI.1.a) Définition

Définition

Soit $f:[a,b] \to \mathbb{R}$ une fonction <u>continue</u> sur [a,b] et soit $n \in \mathbb{N}^*$. Soit $a = a_0 < a_1 < a_2 < \cdots < a_n = b$ une subdivision finie de [a,b].

• On appelle somme de Riemann toute somme s'écrivant :

$$R_n = \sum_{k=0}^{n-1} (a_{k+1} - a_k) f(\xi_k)$$

où pour tout $k \in [0, n-1]$, ξ_k est un élément choisi dans $[a_k, a_{k+1}]$.

Remarque

On considère en particulier des sommes de Riemann définies sur des subdivisions régulières *i.e.* telles que : $\forall k \in [0, n-1], \ a_{k+1} - a_k = \frac{b-a}{n}$.

• En prenant pour tout $k \in [0, n-1], \xi_k = a_k$.

$$S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k \frac{b-a}{n}\right)$$

• En prenant pour tout $k \in [0, n-1], \xi_k = a_{k+1}$.

$$T_n = \frac{b-a}{n} \sum_{k=1}^n f\left(a+k \frac{b-a}{n}\right)$$

• En prenant pour tout $k \in [0, n-1]$, $\xi_k = \frac{a_k + a_{k+1}}{2}$.

$$M_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{2k+1}{2} \frac{b-a}{n}\right)$$

Remarque

Les sommes de Riemann dépendent des paramètres a, b et f. En toute rigueur, il faudrait donc écrire $S_n(a,b,f)$. On se permettra d'alléger cette notation pour ne conserver que S_n en précisant par ailleurs ces paramètres.

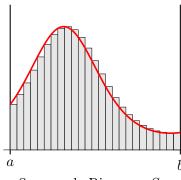
VI.1.b) Méthode des rectangles

Définition

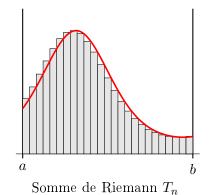
La méthode des rectangles est une méthode d'analyse numérique consistant à approcher le calcul de l'intégrale $\int_a^b f(t) dt$.

- On considère une subdivision $a = a_0 < a_1 < a_2 < \cdots < a_n = b$.
- On approche $\int_{a_k}^{a_{k+1}} f(t) dt$ par l'aire d'un rectangle de côté $[a_k, a_{k+1}]$ et s'appuyant sur la courbe \mathscr{C}_f .
- On approche alors $\int_a^b f(t) dt$ par la somme de toutes les aires de rectangles ainsi définis.

Autrement dit, $\int_a^b f(t) dt$ est approchée par une somme de Riemann.



Somme de Riemann \mathcal{S}_n



Découpage avec n=25

VI.1.c) Convergence de la méthode

Théorème 12. Cas des fonctions continues Soit $f : [a,b] \to \mathbb{R}$ continue sur [a,b].

• Convergence de la somme (S_n) .

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k \frac{b-a}{n}\right) = \int_a^b f(t) dt$$

• Convergence de la somme (T_n) .

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right) = \int_{a}^{b} f(t) dt$$

• Convergence de la somme (M_n) .

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{2k+1}{2} \frac{b-a}{n}\right) = \int_{a}^{b} f(t) dt$$

Démonstration.

La démonstration est tout à fait similaire à celle du Théorème 1.

Cas particulier

• Les exercices sur les sommes de Riemann se traitent en faisant apparaître le cas particulier : $a=0,\,b=1.$ On a alors :

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f(t) dt = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$

• Illustrons ce procédé par un énoncé classique. Démontrer que la suite $\left(\sum_{k=1}^n \frac{1}{n+k}\right)$ est convergente et calculer sa limite.

L'énoncé du cas particulier nous invite à faire apparaître la quantité $\frac{k}{}$ Ainsi, on a : dans la somme finie. Or on a :

$$n+k=n$$
 $\left(1+rac{k}{n}\right)$ donc $\sum\limits_{k=1}^{n}$ $\frac{1}{n+k}=\sum\limits_{k=1}^{n}$ $\frac{1}{n}$ $\frac{1}{1+rac{k}{n}}=\frac{1}{n}\sum\limits_{k=1}^{n}$ $\frac{1}{1+rac{k}{n}}$

Ainsi:
$$\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \text{ avec } f: t \mapsto \frac{1}{1+t}.$$

On en déduit que la suite de l'énoncé est convergente et que :

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} = \int_{0}^{1} \frac{1}{1 + t} dt = \left[\ln(|1 + t|) \right]_{0}^{1} = \ln 2 - \ln 1$$

VI.1.d) Vitesse de convergence dans le cas de fonctions \mathcal{C}^1 (CULTURE)

Théorème 13.

Soit
$$f:[a,b] \to \mathbb{R}$$
 de classe \mathcal{C}^1 sur $[a,b]$.

Notons
$$M_1 = \sup_{x \in [a,b]} |f'(x)|.$$

Alors on
$$a:$$

$$\left| \int_a^b f(t) \ dt - S_n \right| \leqslant \frac{(b-a)^2}{2n} \ M_1$$

$D\'{e}monstration.$

Remarquons tout d'abord que M_1 est bien défini. En effet, comme f est de classe \mathcal{C}^1 sur [a,b], alors f' est continue sur [a,b]. La fonction f' est continue sur le SEGMENT [a, b] elle est donc bornée et atteint ses bornes, ce qui démontre l'existence de $M_1 = \sup_{x \in [a,b]} |f'(x)| = \max_{x \in [a,b]} |f'(x)|.$

Par la relation de Chasles, on a :
$$\int_a^b f(t) dt = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f(t) dt$$
.

D'autre part, par définition, on a : $S_n = \sum_{k=0}^{n-1} (a_{k+1} - a_k) f(a_k)$.

On remarque de plus :
$$(a_{k+1} - a_k) f(a_k) = \int_{a_k}^{a_{k+1}} f(a_k) dt$$
.

$$\left| \int_{a}^{b} f(t) dt - S_{n} \right|$$

$$= \left| \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} f(t) dt - \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} f(a_{k}) dt \right|$$

$$= \left| \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} (f(t) - f(a_{k})) dt \right|$$

$$\leqslant \sum_{k=0}^{n-1} \left| \int_{a_{k}}^{a_{k+1}} (f(t) - f(a_{k})) dt \right|$$
(inéquality)

$$\leq \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} |f(t) - f(a_k)| dt$$

(inégalité triangulaire sur les réels)

(inégalité triangulaire sur les intégrales)

Or, par le théorème des accroissements finis, on a que :

$$\mid f(t) - f(a_k) \mid \leqslant M_1 \mid t - a_k \mid$$

Ainsi :
$$\int_{a_k}^{a_{k+1}} |f(t) - f(a_k)| dt \le M_1 \int_{a_k}^{a_{k+1}} |t - a_k| dt$$

Et comme $t \ge a_k$ pour tout $t \in [a_k, a_{k+1}]$, on a :

$$\int_{a_k}^{a_{k+1}} |t - a_k| dt = \int_{a_k}^{a_{k+1}} (t - a_k) dt = \left[\frac{1}{2} (t - a_k)^2\right]_{a_k}^{a_{k+1}}$$
$$= \frac{1}{2} (a_{k+1} - a_k)^2$$

Finalement, on obtient:

$$\left| \int_{a}^{b} f(t) dt - S_{n} \right| \leq \sum_{k=0}^{n-1} \frac{M_{1}}{2} (a_{k+1} - a_{k})^{2}$$

$$= \sum_{k=0}^{n-1} \frac{M_{1}}{2} \left(\frac{b-a}{n} \right)^{2} = \varkappa \frac{M_{1}}{2} \frac{(b-a)^{2}}{n^{2}} = \frac{(b-a)^{2}}{2n} M_{1}$$

Remarque

• Ce théorème est en fait valable pour toute somme de Riemann (notamment (T_n) et (M_n)). La démonstration est similaire à remplacement de a_k par ξ_k près avec :

$$\int_{a_k}^{a_{k+1}} |t - \xi_k| dt \leqslant \int_{a_k}^{a_{k+1}} |t - a_k| dt$$

• En fait si f est de classe C^2 sur [a, b], on a même un théorème plus précis pour (M_n) montrant que la convergence est plus rapide dans ce cas.

$$\left| \int_{a}^{b} f(t) dt - M_{n} \right| \leq \frac{(b-a)^{3}}{24n^{2}} \sup_{x \in [a,b]} |f''(x)|$$

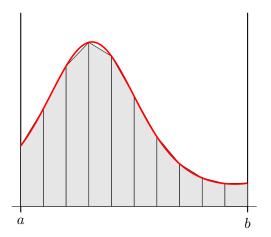
Application.

Grâce à ce théorème, on peut calculer une approximation de l'intégrale $\int_a^b f(t) dt$ à ε près par un calcul de S_n .

- Trouver un entier n_0 tel que : $\frac{(b-a)^2}{2n_0}M_1\leqslant \varepsilon$ Il suffit de prendre $n_0=\left\lceil\frac{(b-a)^2}{2\varepsilon}M_1\right\rceil$
- S_{n_0} est alors une approximation à ε près de $\int_a^b f(t) dt$:

$$\left| \int_a^b f(t) \ dt - S_{n_0} \right| \leqslant \frac{(b-a)^2}{2n_0} \ M_1 \leqslant \varepsilon$$

VI.2. Méthode des trapèzes



Méthode des trapèze Somme I_n avec n = 10

Théorème 14.

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b. Soit f une fonction de classe C^2 sur [a,b].

Soit $n \in \mathbb{N}^*$. Pour tout $k \in [0, n]$, on pose : $a_k = a + k \frac{b - a}{n}$. On considère alors la subdivision $a_0 < a_1 < \cdots < a_n$ de [a, b]. On pose enfin :

$$I_n = \frac{b-a}{n} \left(\frac{1}{2} f(a_0) + f(a_1) + \dots + f(a_{n-1}) + \frac{1}{2} f(a_n) \right)$$

$$\left| \int_{a}^{b} f(t) dt - I_{n} \right| \leq \frac{(b-a)^{3}}{12 n^{2}} \times \sup_{[a,b]} (f'')$$

En particulier: $\int_{a}^{b} f(t) dt - I_{n} = \underset{n \to +\infty}{O} \left(\frac{1}{n^{2}}\right).$

Démonstration.

• Soit $(c, d) \in [a, b]^2$ vérifiant : c < d. On effectue une intégration par parties (IPP)

On obtient:

$$\int_{c}^{d} f(t) dt = \left[\left(t - \frac{c+d}{2} \right) f(t) \right]_{c}^{d} - \int_{c}^{d} \left(t - \frac{c+d}{2} \right) f'(t) dt$$
$$= \frac{d-c}{2} \left(f(d) + f(c) \right) - \int_{c}^{d} \left(t - \frac{c+d}{2} \right) f'(t) dt$$

Pour calculer $\int_{c}^{d} \left(t - \frac{c+d}{2}\right) f'(t) dt$, on effectue une intégration par parties (IPP).

On obtient:

$$\int_{c}^{d} \left(t - \frac{c+d}{2} \right) f'(t) dt$$

$$= \left[\left(\frac{t^{2}}{2} - \frac{c+d}{2} t + \frac{cd}{2} \right) f'(t) \right]_{c}^{d} - \int_{c}^{d} \left(\frac{t^{2}}{2} - \frac{c+d}{2} t + \frac{cd}{2} \right) f'(t) dt$$

$$= -\int_{c}^{d} \frac{(t-c)(t-d)}{2} f''(t) dt$$

On en déduit :

$$\int_{c}^{d} f(t) dt = \frac{d-c}{2} \left(f(d) + f(c) \right) + \int_{c}^{d} \frac{(t-c)(t-d)}{2} f''(t) dt$$

Ainsi:

$$\left| \int_{c}^{d} f(t) \ dt - \frac{d-c}{2} \left(f(d) - f(c) \right) \right| = \left| \int_{c}^{d} \frac{(t-c)(t-d)}{2} \ f''(t) \ dt \right|$$

Or :

$$\left| \int_{c}^{d} \frac{(t-c)(t-d)}{2} f''(t) dt \right|$$

$$\leq \int_{c}^{d} \frac{(t-c)(d-t)}{2} |f''(t)| dt \qquad (par inégalité triangulaire)$$

$$\leq \sup_{[c,d]} (|f''|) \int_{c}^{d} \frac{(t-c)(d-t)}{2} dt$$

Enfin, on effectue une intégration par parties (IPP).

On obtient:

$$\int_{c}^{d} (t-c)(d-t) dt = \left[-\frac{(d-t)^{2}}{2} (t-c) \right]_{c}^{d} + \int_{c}^{d} \frac{(d-t)^{2}}{2} dt$$
$$= \left[-\frac{(d-t)^{3}}{6} \right]_{c}^{d} = \frac{(d-c)^{3}}{6}$$

On en déduit :

$$\left| \int_{c}^{d} f(t) dt - \frac{d-c}{2} \left(f(d) - f(c) \right) \right| \leq \sup_{[c,d]} \left(|f''| \right) \frac{(d-c)^{3}}{12}$$

La dernière majoration est obtenue en remarquant : $(c,d) \in [a,b]^2$.

Remarque

Le réel $\frac{d-c}{2}$ (f(d)-f(c)) est l'aide du trapèze défini sur le segment [c,d].

• Soit $n \in \mathbb{N}^*$. Pour tout $k \in [0, n-1]$, on applique le résultat du point précédent à $c = a_k$ et $d = a_{k+1}$:

$$\left| \int_{a_{k}}^{a_{k+1}} f(t) dt - \frac{a_{k+1} - a_{k}}{2} \left(f(a_{k}) + f(a_{k+1}) \right) \right|$$

$$\leq \sup_{[a_{k}, a_{k+1}]} \left(|f''| \right) \frac{(a_{k+1} - a_{k})^{3}}{12}$$

$$\leq \sup_{[a, b]} \left(|f''| \right) \frac{(a_{k+1} - a_{k})^{3}}{12}$$

$$\leq \frac{1}{12} \sup_{[a, b]} \left(|f''| \right) \left(\frac{b - a}{n} \right)^{3} \qquad (car, par \ définition \ de \ a_{k} \ et \ a_{k+1} : a_{k+1} - a_{k} = \frac{b - a}{n} \right)$$

$$= \frac{(b - a)^{3}}{12 n^{3}} \sup_{[a, b]} \left(|f''| \right)$$

Donc:

$$\left| \int_{a_k}^{a_{k+1}} f(t) dt - \frac{b-a}{2n} \left(f(a_k) + f(a_{k+1}) \right) \right| \leq \frac{(b-a)^3}{12 n^3} \sup_{[a,b]} \left(|f''| \right)$$

• On en déduit :

$$\left| \int_{a}^{b} f(t) dt - I_{n} \right|$$

$$= \left| \sum_{k=0}^{n-1} \left(\int_{a_{k}}^{a_{k+1}} f(t) dt - \frac{b-a}{2n} \left(f(a_{k}) + f(a_{k+1}) \right) \right) \right| \qquad (par \ relation \ de \ Chasles)$$

$$\leqslant \sum_{k=0}^{n-1} \left| \int_{a_{k}}^{a_{k+1}} f(t) dt - \frac{b-a}{2n} \left(f(a_{k}) + f(a_{k+1}) \right) \right| \qquad (par \ inégalité \ triangulaire)$$

$$\leqslant \sum_{k=0}^{n-1} \frac{(b-a)^{3}}{12 n^{3}} \sup_{[a,b]} \left(|f''| \right) \qquad (d'après \ ce \ qui \ précède)$$

$$= \frac{(b-a)^{3}}{12 n^{2}} \sup_{[a,b]} \left(|f''| \right)$$

VII. Formules de Taylor

VII.1. Formule de Taylor avec reste intégral

Théorème 15.

Soit I un intervalle de \mathbb{R} .

Soit $n \in \mathbb{N}$.

Soit f une fonction de classe C^{n+1} sur I.

Soit $x_0 \in I$.

Pour tout $x \in I$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^{x} \frac{f^{(n+1)}(t)}{n!} (x - t)^n dt$$

Le polynôme $T_{n,x_0}(X) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (X-x_0)^k$ est appelé polynôme de

Taylor de f, à l'ordre n, au point x_0 .

C'est l'unique polynôme P de degré inférieur ou égal à n tel que :

$$\begin{cases}
P(x_0) = f(x_0) \\
P'(x_0) = f'(x_0) \\
\vdots \\
P^{(n)}(x_0) = f^{(n)}(x_0)
\end{cases}$$

Démonstration.

On démontre par récurrence : $\forall n \in \mathbb{N}, \mathscr{P}(n)$

où $\mathscr{P}(n)$: pour toute fonction f de classe \mathcal{C}^{n+1} sur I:

$$\forall x \in I, \quad f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^{x} \frac{f^{(n+1)}(t)}{n!} (x - t)^n dt$$

VII.2. Inégalité de Taylor-Lagrange

Théorème 16.

Soit I un intervalle de \mathbb{R} .

Soit $n \in \mathbb{N}$.

Soit f une fonction de classe C^{n+1} sur I.

Soit $x_0 \in I$.

Pour tout $x \in I$:

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right| \leq \frac{|x - x_0|^{n+1}}{(n+1)!} \sup_{[x_0, x]} (|f^{(n+1)}|)$$

Remarque

Si I est le segment [a,b], alors la fonction $f^{(n+1)}$ est continue sur le SEGMENT [a,b]. Elle y est donc bornée et atteint ses bornes. On peut alors obtenir la majoration suivante :

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right| \leqslant \frac{|x - x_0|^{n+1}}{(n+1)!} \sup_{[a,b]} (|f^{(n+1)}|)$$

 $D\'{e}monstration.$

On utilise l'inégalité de la moyenne.

VII.3. Retour sur la formule de Taylor-Young

Théorème 17.

Soit I un intervalle de \mathbb{R} .

Soit $n \in \mathbb{N}$.

Soit f une fonction de classe C^n sur I.

Soit $x_0 \in I$.

Pour tout $x \in I$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \underset{x \to x_0}{o} ((x - x_0)^n)$$

Démonstration.

On traite le cas : $x \ge x_0$. Le cas $x \le x_0$ se traite de façon similaire.

• Par formule de Taylor avec reste intégral, pour tout $x \in I$:

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^x \frac{f^{(n)}(t)}{(n-1)!} (x - t)^{n-1} dt$$
$$= \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x)$$

• De plus :

$$R_n(x) - \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = \int_{x_0}^x \frac{(x - t)^{n-1}}{(n-1)!} \left(f^{(n)}(t) - f^{(n)}(x_0) \right) dt$$

• Soit $\varepsilon > 0$. La fonction $f^{(n)}$ est continue en x_0 . Il existe donc $\alpha > 0$ tel que :

$$|x - x_0| \leqslant \alpha \implies |f^{(n)}(x) - f^{(n)}(x_0)| \leqslant \varepsilon$$

Supposons alors : $[x - x_0] \le \alpha$. Alors, pour tout $t \in [x_0, x] : |t - x_0| \le |x - x_0| \le \alpha$. D'où :

$$\left| R_n(x) - \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right|$$

$$= \left| \int_{x_0}^x \frac{(x - t)^{n-1}}{(n-1)!} \left(f^{(n)}(t) - f^{(n)}(x_0) \right) dt \right|$$

$$\leqslant \int_{x_0}^x \frac{|x - t|^{n-1}}{(n-1)!} \left| f^{(n)}(t) - f^{(n)}(x_0) \right| dt \qquad (par inégalité triangulaire)$$

$$\leqslant \varepsilon \int_{x_0}^x \frac{|x - t|^{n-1}}{(n-1)!} dt$$

$$= \varepsilon \int_{x_0}^x \frac{(x - t)^{n-1}}{(n-1)!}$$

$$= \varepsilon \frac{(x - x_0)^n}{n!}$$

• Ceci permet de démontrer :

$$\frac{1}{(x-x_0)^n} \left| f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k \right| \xrightarrow[x \to x_0]{} 0$$

VIII. Cas des fonctions à valeurs complexes

VIII.1. Intégrale d'une fonction à valeurs complexes

Définition

Soit $f: I \to \mathbb{C}$

- On dit que f est **continue** sur I si les fonctions Re(f) et Im(f) le sont.
- On note $C^0(I,\mathbb{C})$ ou $C(I,\mathbb{C})$ l'ensemble des fonctions à valeurs complexes continues sur I.

Définition

Soit $f: I \to \mathbb{C}$ une fonction continue sur I.

Soit $(a,b) \in I^2$.

On appelle intégrale de f entre a et b le nombre complexe :

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} \operatorname{Re}(f)(t) dt + i \int_{a}^{b} \operatorname{Im}(f)(t) dt$$

Proposition 9.

Soit $f: I \to \mathbb{C}$ une fonction continue sur I.

Soit $(a,b) \in I^2$.

On déduit de la définition précédente :

1)
$$\operatorname{Re}\left(\int_{a}^{b} f(t) dt\right) = \int_{a}^{b} \operatorname{Re}\left(f\right)\left(t\right) dt$$

2)
$$\operatorname{Im}\left(\int_{a}^{b} f(t) dt\right) = \int_{a}^{b} \operatorname{Im}\left(f\right)\left(t\right) dt$$

VIII.2. Propriétés

Les propriétés suivantes restent valides pour des fonctions à valeurs dans $\mathbb C$:

- × la linéarité de l'intégrale,
- × la relation de Chasles,
- \times l'inégalité triangulaire,
- × les sommes de Riemann et donc la méthode des rectangles,
- × la notion de primitive,
- × les techniques de calculs d'intégrales,
- × les formules de Taylor (formule de Taylor avec reste intégral, inégalité de Taylor-Lagrange, formule de Taylor-Young)

Les propriétés suivantes n'ont aucun sens pour des fonctions à valeurs dans $\mathbb C$ (car $\mathbb C$ n'est pas muni d'une relation d'ordre) :

- \times la croissance de l'intégrale
- × la positivité de l'intégrale

Proposition 10.

Soit $f: I \to \mathbb{C}$ une fonction continue sur I.

Soit $(a,b) \in I^2$.

$$\overline{\int_a^b f(t) dt} = \int_a^b \overline{f(t)} dt$$