CH III : Généralités sur les fonctions - Étude de fonctions

I. Étude graphique de fonctions

La méthodologie d'étude d'une fonction f (dérivable) est la suivante.

- 1) Déterminer l'ensemble de définition \mathcal{D}_f de la fonction (si celui-ci n'est pas donné).
- 2) Recherche de l'intervalle d'étude \mathscr{E}_f par réduction (parité, périodicité).
- 3) Démonstration de la dérivabilité de f sur \mathcal{E}_f .
- 4) Calcul de f' (là où f est dérivable).
- 5) Construction du tableau de variations de f (étude du signe de f'(x) pour tout $x \in \mathscr{E}_f$).
- $\boldsymbol{6}$) Étude des limites de f aux bornes de l'intervalle d'étude, et recherche d'asymptotes.
- 7) Calcul des tangentes de f en certains points (généralement l'énoncé précise ces points).

(on y reviendra dans un chapitre ultérieur . . .)

- 8) Étude graphique : dans un repère, on place :
 - \times les points particuliers (ceux dont l'abscisse x vérifie f'(x) = 0),
 - × les droites particulières (tangentes) de la courbe.
 - $\times\,$ on peut éventuellement placer des points supplémentaires.

On trace alors \mathscr{C}_f la courbe représentative de f sur \mathscr{E}_f puis sur \mathscr{D}_f .

II. Généralités sur les fonctions

II.1. Fonctions $D \to \mathbb{R}$

Notation

Soit D une partie non vide de \mathbb{R} .

L'ensemble des fonctions de D dans \mathbb{R} est notée $\mathcal{F}(D,\mathbb{R})$ ou \mathbb{R}^D .

Proposition 1.

Soit D une partie de \mathbb{R} non vide (en pratique, D sera souvent un intervalle ou une réunion d'intervalles).

Soient $f: D \to \mathbb{R}$ et $g: D \to \mathbb{R}$ des applications

Soit $(\lambda, \mu) \in \mathbb{R}^2$.

Alors f+g, $f\times g$ et $\lambda\cdot f+\mu\cdot g$ sont également des applications de D dans \mathbb{R} .

Remarque

On verra dans un chapitre ultérieur que cela signifie en particulier que $\mathcal{F}(D,\mathbb{R})$ est un \mathbb{R} -espace vectoriel (c'est en fait même une \mathbb{R} -algèbre mais cela sort du cadre de notre programme).

Les fonctions f et g doivent être définies sur le même ensemble D. On ne peut, par exemple, sommer les fonctions $f: \left| -\frac{\pi}{2}, \frac{\pi}{2} \right| \to \mathbb{R}$ et $g: \left| 2, +\infty \right| \to \mathbb{R}$

$$x \mapsto \tan(x)$$

$$x \rightarrow \ln(x-2)$$

II.2. Monotonie

Définition

Soit D une partie non vide de \mathbb{R} .

Soit f une fonction de D dans \mathbb{R} .

On dit que:

a) la fonction f est **croissante** sur D si et seulement si :

$$\forall (x,y) \in D^2, \quad (x \leqslant y) \Rightarrow (f(x) \leqslant f(y))$$

b) la fonction f est strictement croissante sur D si et seulement si :

$$\forall (x,y) \in D^2, \quad (x < y) \ \Rightarrow \ \left(f(x) < f(y) \right)$$

c) la fonction f est décroissante sur D si et seulement si :

$$\forall (x,y) \in D^2, \quad (x \leqslant y) \Rightarrow (f(x) \geqslant f(y))$$

d) la fonction f est strictement décroissante sur D si et seulement si :

$$\forall (x,y) \in D^2, \quad (x < y) \Rightarrow (f(x) > f(y))$$

e) la fonction f est **monotone** si et seulement si :

$$f$$
 croissante sur D OU f décroissante sur D

On obtient de même la définition de **stricte monotonie** sur *D*.

Remarque

• On pourrait également donner la définition suivante de la stricte croissance de f sur D :

$$\forall (x,y) \in D^2, \quad (x < y) \iff (f(x) < f(y))$$

Démonstration.

Pour démontrer cette équivalence des définitions, notons :

- (1) $\forall (x,y) \in D^2$, $(x < y) \Rightarrow (f(x) < f(y))$
- (2) $\forall (x,y) \in D^2$, $(x < y) \Leftrightarrow (f(x) < f(y))$

On procède par double implication.

- (\Leftarrow) On a bien sûr : $(2) \Rightarrow (1)$.
- (\Rightarrow) Supposons (1) et démontrons (2). Soit $(x,y) \in D^2$. On procède de nouveau par double implication.
 - (\Rightarrow) Vraie d'après (1).
 - (⇐) On procède par contraposée.

Supposons : $x \geqslant y$. Deux cas se présentent alors :

- \times si x = y, alors on a toujours : f(x) = f(y) par définition d'une fonction.
- $\times \underline{\operatorname{si}} x > \underline{y}$, alors d'après (1): f(x) > f(y).

Finalement : $f(x) \ge f(y)$.

On a bien démontrer : $NON(x < y) \Rightarrow NON(f(x) < f(y))$.

• Bien sûr, on peut de même donner une définition équivalente de la stricte décroissance de f sur D:

$$\forall (x,y) \in D^2, \quad (x < y) \iff (f(x) > f(y))$$

Dire qu'une fonction f est croissante (resp. décroissante, resp.

monotone)

n'a aucun sens.

Une fonction est toujours croissante (resp. décroissante, resp. monotone) SUR UN INTERVALLE.

Par exemple:

- \times la fonction $x \mapsto x^2$ est croissante sur \mathbb{R}_+ , mais pas sur \mathbb{R} .
- \times la fonction inverse $x \mapsto \frac{1}{x}$ est décroissante sur \mathbb{R}_{+}^{*} et décroissante sur \mathbb{R}_{+}^{*} . Cependant, elle n'est pas décroissante sur \mathbb{R}^{*} . En effet :

$$-2\leqslant 1 \ \text{ET} \ \frac{1}{-2}<\frac{1}{1}$$

Il est donc crucial de préciser l'intervalle de monotonie.

Exemples

- Les fonctions $x \mapsto x^3$, $x \mapsto e^x$ sont (strictement) croissantes sur \mathbb{R} .
- La fonction $x \mapsto \lfloor x \rfloor$ est croissante sur $\mathbb R$ mais pas strictement croissante sur $\mathbb R$. En effet :

$$1 < rac{3}{2}$$
 ET $\lfloor 1
floor \geqslant \left \lfloor rac{3}{2}
ight
floor$

- Les fonctions $x \mapsto x^2$ et $x \mapsto |x|$ sont (strictement) décroissantes sur \mathbb{R}_+ et (strictement) croissantes sur \mathbb{R}_+ .
- La fonction sin est (strictement) croissante sur chaque intervalle $\left[-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi\right]$ et (strictement) décroissante sur chaque intervalle $\left[\frac{\pi}{2}+2k\pi,\frac{3\pi}{2}+2k\pi\right]$, pour tout $k\in\mathbb{Z}$.

Proposition 2.

Soit D une partie non vide de \mathbb{R} .

Soient f et g deux fonctions de D dans \mathbb{R} .

Alors:

- a) si f et g sont croissantes (resp. strictement croissantes) sur D, alors f+g est croissante (resp. strictement croissante) sur D.
- b) si f et g sont décroissantes (resp. strictement décroissantes) sur D, alors f+g est décroissante (resp. strictement décroissante) sur D.

Démonstration.

À faire.

Proposition 3.

Soit D une partie non vide de \mathbb{R} .

Soient f et g deux fonctions de D dans \mathbb{R} .

Supposons que les fonctions f et g sont :

- \times croissantes (resp. strictement croissantes) sur D,
- \times positives sur D.

Alors la fonction $f \times g$ est croissante (resp. strictement croissante) sur D.

 $D\'{e}monstration.$

À faire.

Proposition 4.

Soit D une partie non vide de \mathbb{R} .

Soit f une fonction de D dans \mathbb{R} .

Soit g une fonction de f(D) dans \mathbb{R} .

Alors:

 $a) \left| \begin{array}{c} f \ croissante \ sur \ D \\ g \ croissante \ sur \ f(D) \end{array} \right\} \quad \Rightarrow \quad g \circ f \ croissante \ sur \ D$

$$b) \left[\begin{array}{c} f \ croissante \ sur \ D \\ g \ d\'{e}croissante \ sur \ f(D) \end{array} \right\} \quad \Rightarrow \quad g \circ f \ d\'{e}croissante \ sur \ D$$

$$\begin{array}{c|c} c \end{pmatrix} & \begin{array}{c} f \ d\'{e}croissante \ sur \ D \\ \\ g \ croissante \ sur \ f(D) \end{array} \end{array} \right\} \quad \Rightarrow \quad g \circ f \ d\'{e}croissante \ sur \ D$$

$$\begin{array}{c|c} \textbf{d)} & f \ \textit{d\'{e}croissante} \ \textit{sur} \ D \\ & g \ \textit{d\'{e}croissante} \ \textit{sur} \ f(D) \end{array} \right\} \quad \Rightarrow \quad g \circ f \ \textit{croissante} \ \textit{sur} \ D$$

Remarque

Ces quatre propriétés sont encore valides en remplaçant tous les « croissante » par « strictement croissante », et tous les « décroissante » par « strictement décroissante ».

Démonstration.

À faire.

Exercice 1

Déterminer la monotonie des fonctions suivantes sur leur ensemble de définition sans effectuer de calculs de dérivées.

1.
$$f: x \mapsto x^2 + e^x \operatorname{sur} \mathbb{R}_+$$
.

1.
$$f: x \mapsto x^2 + e^x \text{ sur } \mathbb{R}_+$$
. 4. $h: x \mapsto x \sin(x) + |x| \text{ sur } [0, \frac{\pi}{2}]$.

2.
$$u: x \mapsto x^2 + e^{-x} \text{ sur } \mathbb{R}_-.$$

3.
$$g: x \mapsto \ln(2x+3) \text{ sur }]-\frac{3}{2}, +\infty[$$
. 5. $v: x \mapsto |x| - \cos(x^3) \text{ sur } [-\pi, 0].$

II.3. Fonctions majorées, minorées, bornées

Définition

Soit D une partie non vide de \mathbb{R} .

Soit f une fonction de D dans \mathbb{R} .

On dit que:

a) la fonction f est minorée sur D si et seulement si :

$$\exists m \in \mathbb{R}, \quad \forall x \in D, \quad m \leqslant f(x)$$

b) la fonction f est majorée sur D si et seulement si :

$$\exists M \in \mathbb{R}, \quad \forall x \in D, \quad f(x) \leqslant M$$

c) la fonction f est bornée sur D si et seulement si :

$$\exists (m,M) \in \mathbb{R}^2, \quad \forall x \in D, \quad m \leqslant f(x) \leqslant M$$

ou encore, si et seulement si :

$$\exists K \in \mathbb{R}_+, \quad \forall x \in D, \quad |f(x)| \leq K$$

Remarque

Si une fonction f admet un majorant M (resp. un minorant m) alors elle en admet une infinité. En effet, tout élément plus grand que M (resp. plus petit que m) est un majorant (resp. minorant) de f.

Les bornes m et M évoquées dans ces définitions ne sont pas forcément des valeurs prises par f.

Par exemple, la fonction $f: x \mapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$ est majorée par 1 (donc par 1.1, 1.5, e, 37, 10^{18} ...) mais 1 n'est pas atteint par f.

Exemples

- La fonction $x \mapsto x^2$ est minorée par 0 sur $\mathbb R$ mais n'est pas majorée sur $\mathbb R$. En effet : $\lim_{x \to +\infty} x^2 = +\infty$.
- La fonction cos est bornée sur \mathbb{R} . En effet : $\forall x \in \mathbb{R}, -1 \leq \cos(x) \leq 1$.
- La fonction $x\mapsto e^x$ est minorée par 0 sur $\mathbb R$ mais n'est pas majorée sur $\mathbb R$. En effet : $\lim_{x\to +\infty} e^x = +\infty$.
- Les fonctions $x \mapsto \ln(x)$ et $x \mapsto x^3$ ne sont ni minorée ni majorée respectivement sur \mathbb{R}_+^* et sur \mathbb{R} . En effet : $\lim_{x \to 0^+} \ln(x) = -\infty$ et $\lim_{x \to -\infty} x^3 = -\infty$. De plus : $\lim_{x \to +\infty} \ln(x) = +\infty$ et $\lim_{x \to +\infty} x^3 = +\infty$.
- La fonction $x\mapsto -x^2+2$ est majorée par 2 sur $\mathbb R$ mais n'est pas minorée sur $\mathbb R$. En effet : $\lim_{x\to +\infty} -x^2+2=-\infty$.

Proposition 5.

Soit D une partie non vide de \mathbb{R} .

Soient f et g deux fonctions de D dans \mathbb{R} .

Soit $(\lambda, \mu) \in \mathbb{R}^2$.

- a) Si f et g sont minorées sur D, alors f+g, $f\times g$ et $\lambda\cdot f+\mu\cdot g$ sont minorées sur D.
- b) Si f et g sont majorées sur D, alors f + g, $f \times g$ et $\lambda \cdot f + \mu \cdot g$ sont majorées sur D.
- c) Si f et g sont bornées sur D, alors f+g, $f \times g$ et $\lambda \cdot f + \mu \cdot g$ sont bornées sur D.

 $D\'{e}monstration.$

À faire.

Remarque

Notons que l'ensemble des fonctions bornées de D dans \mathbb{R} est encore un \mathbb{R} -espace vectoriel (et même encore une \mathbb{R} -algèbre).

II.4. Extrema locaux, extrema globaux

II.4.a) Notion de minimum / maximum global

Définition

Soit $f: I \to \mathbb{R}$.

1) f admet un minimum sur l'intervalle I si :

$$\exists x_0 \in I, \forall x \in I, \ f(x) \geqslant f(x_0)$$

Si tel élément existe, on dit que f atteint son **minimum** au point x_0 .

2) f admet un maximum sur l'intervalle I si :

$$\exists x_0 \in I, \forall x \in I, \ f(x) \leqslant f(x_0)$$

Si tel élément existe, on dit que f atteint son maximum au point x_0 .

Remarque

- S'il existe, le maximum (resp. minimum) d'une fonction sur I est unique. Cependant, ce maximum peut être atteint en plusieurs points de I.
- Le maximum (resp. minimum) de f sur I, s'il existe, est un majorant (resp. minorant) de f qui est atteint par f.



La fonction f admet le minimum $-\frac{3}{2}$. Ce minimum est atteint en les deux points x_0 et x_1 :

- $f(x_0) = -\frac{3}{2}$
- $f(x_1) = -\frac{3}{2}$.

II.4.b) Notion de minimum / maximum local

Définition

Soit $f: I \to \mathbb{R}$ et $x_0 \in I$.

1) On dit que f admet un maximum local en x_0 si :

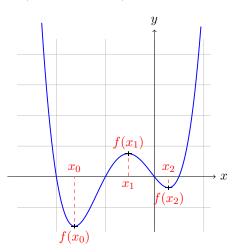
$$\exists \alpha > 0, \forall x \in I, |x - x_0| \leqslant \alpha \Rightarrow f(x) \leqslant f(x_0)$$

2) On dit que f admet un minimum local en x_0 si :

$$\exists \alpha > 0, \forall x \in I, |x - x_0| \leqslant \alpha \Rightarrow f(x_0) \leqslant f(x)$$

Remarque

- Une fonction f peut admettre plusieurs maxima (resp. minima) locaux.
- Un maximum (resp. minimum) local d'une fonction f est un majorant (resp. minorant) local de f.



La fonction f admet :

- un minimum local en x_0 .
- un maximum local en x_1 .
- un minimum local en x_2 .

La fonction f:

- n'admet pas de maximum.
- admet un minimum (global) au point x_0 .

La fonction f n'admet pas de majorant. Elle admet une infinité de minorants : tout réel $m \in \mathbb{R}$ tel que $m \leqslant f(x_0)$ est un minorant de f. Parmi ses minorants, on peut distinguer celui qui a le plus d'intérêt.

II.4.c) Notion de borne supérieure / inférieure

Définition

Soit $f: I \to \mathbb{R}$.

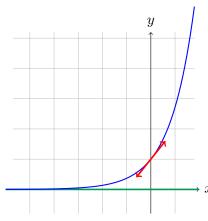
- 1) Si f est minorée sur I, on appelle borne inférieure de f sur I le plus grand des minorants de f sur I. Cet élément est noté inf f ou $\inf_{x \in I} f(x)$.
- 2) Si f est majorée sur I, on appelle **borne supérieure de** f sur I, le plus petit des majorants de f sur I. Cet élément est noté sup f ou sup f(x).
- 3) Si f est bornée sur I, on peut donc définir sup |f|.

La borne supérieure (resp. inférieure) de f n'est pas forcément une valeur atteinte par f. Si c'est le cas il s'agit du minimum (resp. maximum) de la fonction.

$$\bullet \ \ \text{si inf} \ \ f \in f(I), \quad \ \text{alors} \quad \inf_{x \in I} \ f(x) = \min_{x \in I} \ f(x)$$

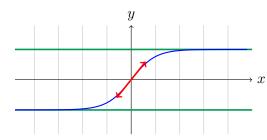
• si
$$\inf_{I} f \in f(I)$$
, alors $\inf_{x \in I} f(x) = \min_{x \in I} f(x)$
• si $\sup_{I} f \in f(I)$, alors $\sup_{x \in I} f(x) = \max_{x \in I} f(x)$

• Considérons la fonction $f: x \mapsto e^x$.



- La fonction f n'admet pas de minimum sur \mathbb{R} .
- Elle est minorée par tout réel $m \leq 0$.
- Sa borne inférieure est : $\inf f = 0.$

• La fonction $g: x \mapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$ n'admet pas de minimum / maximum.



- La fonction g n'admet pas de minimum / maximum.
- Elle est minorée par tout réel $m \leq -1$.
- Elle est majorée par tout réel $M \geqslant 1$.
- $\inf_{\mathbb{R}} g = -1 \text{ et } \sup_{\mathbb{R}} g = 1.$

III. Réduction de l'ensemble de définition

III.1. Parité, imparité

Définition

Une fonction $f: I \to \mathbb{R}$ est **paire** si : $\forall x \in I, \quad f(-x) = f(x)$

Pour que cette définition soit valide, il faut supposer que les quantités f(x) et f(-x) sont bien définies. Il faut donc que la fonction f soit définie sur un intervalle I symétrique :

$$x \in I \Rightarrow -x \in I$$

Remarque

- La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.
- Ainsi, si f paire, alors f n'est pas injective (sauf si $I = \{0\}$).
- On peut écrire une version « sans les x » de cette définition. Soit I un intervalle symétrique. Une fonction $f:I\to\mathbb{R}$ est paire si :

$$f \circ (-\mathrm{id}) = f$$

Étude d'une fonction paire

Soit f une fonction définie sur I.

Supposons que f est paire. Alors l'étude de f s'effectue de la façon suivante :

- 1) On restreint l'ensemble d'étude de f à $I \cap \mathbb{R}_+$.
- 2) On étudie f normalement sur $I \cap \mathbb{R}_+$: dérivabilité, dérivation, variations, limites.
- 3) On conclut quant au tableau de variations de f sur $I \cap \mathbb{R}_+$.
- 4) Pour le tracé de la courbe représentative de f, on l'effectue d'abord sur $I \cap \mathbb{R}_+$, puis on complète la partie $I \cap \mathbb{R}_-$ en effectuant le symétrique de la courbe déjà tracée par rapport à l'axe des ordonnées.

Exemple

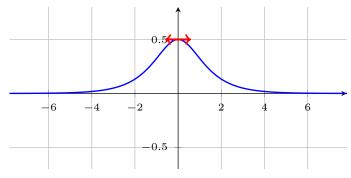
On considère la fonction $f: x \mapsto \frac{e^x}{e^{2x} + 1}$.

Donner son domaine de définition \mathcal{D}_f et démontrer que f est paire.

- La quantité f(x) est définie pour tout x tel que : $e^{2x} + 1 \neq 0$. Or $e^{2x} + 1 > 0$. On en déduit que $\mathcal{D}_f = \mathbb{R}$.
- Soit $x \in \mathbb{R}$.

$$f(-x) = \frac{e^{-x}}{e^{-2x} + 1} = \frac{\frac{1}{e^x}}{\frac{1}{e^{2x}} + 1} = \frac{\frac{1}{e^x}}{\frac{1+e^{2x}}{e^{2x}}} = \frac{1}{e^x} \frac{e^{2x}}{1 + e^{2x}} = \frac{e^x}{e^{2x} + 1} = f(x)$$

On en déduit que f est paire. Sa courbe représentative est donc symétrique par rapport à l'axe des ordonnées.



Définition

Soit I un intervalle symétrique par rapport à 0.

Une fonction $f: I \to \mathbb{R}$ est **impaire** si : $\forall x \in I, \quad f(-x) = -f(x)$

Remarque

- La courbe représentative d'une fonction impaire est symétrique par rapport à l'origine.
- Soit I un intervalle symétrique par rapport à 0. Une fonction $f:I\to\mathbb{R}$ est impaire si :

$$f \circ (-\mathrm{id}) = (-\mathrm{id}) \circ f$$

Étude d'une fonction impaire

Soit f une fonction définie sur I.

Supposons que f est impaire. Alors l'étude de f s'effectue de la façon suivante :

- 1) On restreint l'ensemble d'étude de f à $I \cap \mathbb{R}_+$.
- 2) On étudie f normalement sur $I \cap \mathbb{R}_+$: dérivabilité, dérivation, variations, limites.
- 3) On conclut quant au tableau de variations complet de f sur $I \cap \mathbb{R}_+$.
- 4) Pour le tracé de la courbe représentative de f, on l'effectue d'abord sur $I \cap \mathbb{R}_+$, puis on complète la partie $I \cap \mathbb{R}_-$ en effectuant le symétrique de la courbe déjà tracée par rapport à l'origine du repère.

Proposition 6. (jouons avec la définition . . .)

Soient f et g deux fonctions définies sur \mathbb{R} .

- 1) | $f paire \Rightarrow g \circ f paire$
- 2) $| f \ et \ g \ impaires \Rightarrow g \circ f \ impaire$
- 3) | f impaire et g paire $\Rightarrow g \circ f$ paire

Démonstration.

1) Soit $x \in \mathbb{R}$. On a alors :

$$g \circ f(-x) = g(f(-x)) = g(f(x)) = g \circ f(x)$$

Ce qui démontre que $g \circ f$ est paire.

On aurait pu faire une démonstration « sans les x » :

$$(f \circ g) \circ (-\mathrm{id}) = f \circ (g \circ (-\mathrm{id})) = f \circ g$$

2) Soit $x \in \mathbb{R}$. On a alors :

$$g \circ f(-x) = g(f(-x)) = g(-(f(x))) = -g(f(x)) = -g \circ f(x)$$

Ce qui démontre que $q \circ f$ est impaire.

3) Soit $x \in \mathbb{R}$. On a alors :

$$g \circ f \circ (-x) = g(f(-x)) = g(-f(x)) = g(f(x)) = g \circ f(x)$$

Ce qui démontre que $g \circ f$ est paire.

Exercice 2

Soit I un intervalle de \mathbb{R} .

Démontrer que toute fonction de I dans \mathbb{R} se décompose de manière unique en la somme d'une fonction paire et d'une fonction impaire.

П

III.2. Périodicité

Définition

Soit D une partie non vide de \mathbb{R} .

Soit f une fonction de D dans \mathbb{R} .

Soit $T \in \mathbb{R}_+^*$.

On dit que f est T-périodique (ou périodique de période T) sur D si :

1)
$$\forall x \in D, \ x + T \in D,$$

2) $\forall x \in D, \ f(x + T) = f(x)$

Remarque

- Remarquons que le point 1) est nécessaire pour la bonne définition du point 2).
- \bullet On dit que f est périodique sur D si :

$$\exists T \in \mathbb{R}_{+}^{*}, \quad \left\{ \begin{array}{l} 1) \ \forall x \in D, \ x + T \in D, \\ 2) \ \forall x \in D, \ f(x + T) = f(x) \end{array} \right.$$

- En particulier l'ensemble D doit être stable par la translation $x \mapsto x + T$.
- Notons que si f est T-périodique sur D, alors, pour tout $x \in D$:

$$f(x-T) = f(x) = f(x+T)$$

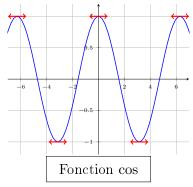
$$\cdots = f(x-3T) = f(x-2T)$$

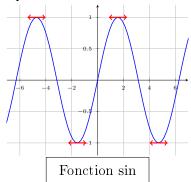
$$f(x+2T) = f(x+3T) = \cdots$$

Finalement: $\forall k \in \mathbb{Z}, f(x+kT) = f(x)$

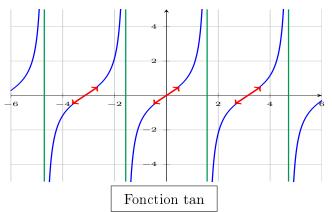
Exemples

• Les fonctions cos et sin sont 2π -périodiques sur \mathbb{R} .

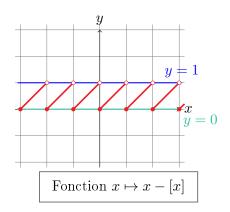




• La fonction tan est π -périodique sur $\bigcup_{k\in\mathbb{Z}} \left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$.



• La fonction partie fractionnaire $x \mapsto x - |x|$ est 1-périodique sur \mathbb{R} .



Proposition 7.

Soit D une partie non vide de \mathbb{R} .

Soit f une fonction de D dans \mathbb{R} .

$$\begin{array}{ccc} f \ est \ T\mbox{-p\'eriodique} & \Rightarrow & pour \ tout \ n \in \mathbb{N}^*, \ f \ est \\ sur \ D & & nT\mbox{-p\'eriodique} \ sur \ D \end{array}$$

Démonstration.

À faire.

Remarque

Tout réel non nul ω tel que :

$$\times \ \forall x \in D, \, x + \omega \in D,$$

$$\times \ \forall x \in D, f(x+\omega) = f(x).$$

s'appelle une **période** de f.

Étude d'une fonction T-périodique

Soit f une fonction définie sur I.

Supposons que f est T-périodique. Alors l'étude de f s'effectue de la façon suivante :

- 1) On restreint l'ensemble d'étude de f à $I \cap J_T$ (ou $I \cap J_T$ où J_T est un intervalle de longueur T).
- 2) On étudie f normalement sur $I\cap [0,T]$: dérivabilité, dérivation, variations, limites.
- 3) On conclut quant au tableau de variations de f sur $I \cap J_T$.
- 4) Pour le tracé de la courbe représentative de f, on l'effectue d'abord sur $I \cap [0,T]$, puis on complète sur tout I en effectuant des translations de vecteur (T,0).

III.3. Translation et homothétie

Définition

Soit $n \in \mathbb{N}^*$.

Soit \overrightarrow{u} un vecteur de \mathbb{R}^n .

On appelle **translation** de vecteur \overrightarrow{u} , l'application qui à un point $M \in \mathbb{R}^n$ associe le point $M' \in \mathbb{R}^n$ tel que $\overrightarrow{MM'} = \overrightarrow{u}$.

☐ Illustration

Avant translation de vecteur \vec{u}

Après translation de vecteur \overrightarrow{u}

Proposition 8.

Soit $a \in \mathbb{R}$.

L'application $x \mapsto x + a$ de \mathbb{R} dans \mathbb{R} est la translation de vecteur a.

Proposition 9.

Soit D une partie non vide de \mathbb{R} .

Soit f une fonction définie sur D, à valeurs dans \mathbb{R} . On note \mathcal{C}_f sa courbe de représentative.

Soit $a \in \mathbb{R}$.

Alors, la fonction $g_a: x \mapsto f(x+a):$

 \times est définie sur $\{x-a \mid x \in D\},\$

 \times admet pour courbe représentative la translation de C_f par le vecteur (-a,0).

Exercice 3

1. Tracer la courbe représentative de la fonction ln.

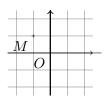
2. En déduire le tracé de la courbe représentative de $f: x \mapsto \ln(x+1)$.

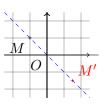
Définition

Soit $k \in \mathbb{R}^*$.

On appelle homothétie de centre O et de rapport k, l'application qui à un 2. En déduire le tracé de la courbe représentative de $f: x \mapsto \cos(2\pi x)$. point $M \in \mathbb{R}^n$ associe le point $M' \in \mathbb{R}^n$ tel que $\overrightarrow{OM'} = k \cdot \overrightarrow{OM}$.

Illustration





Avant homothétie de centre O de rapport $-\frac{1}{2}$

Après homothétie de centre Ode rapport $-\frac{3}{2}$

Proposition 10.

Soit $a \in \mathbb{R}^*$.

L'application $x \mapsto a x$ de \mathbb{R} dans \mathbb{R} est l'homothétie de centre 0 et de rapport

Proposition 11.

Soit D une partie non vide de \mathbb{R} .

Soit f une fonction définie sur D, à valeurs dans \mathbb{R} . On note \mathcal{C}_f sa courbe de représentative.

Soit $a \in \mathbb{R}^*$.

Alors, la fonction $g_a: x \mapsto f(ax):$

 \times est définie sur $\{\frac{x}{a} \mid x \in D\},\$

imes admet pour courbe représentative \mathcal{C}_f munie du changement d'échelle d'abscisse $x \mapsto \frac{x}{a}$.

Exercice 4

1. Tracer la courbe représentative de la fonction cos.

IV. Dérivabilité et dérivation

IV.1. Règles de dérivation

IV.1.a) Somme, produit, quotient

Soient $f, g : \mathbb{R} \to \mathbb{C}$. Soit $\lambda \in \mathbb{C}$. Soit $n \in \mathbb{N}$.

Les égalités suivantes sont vérifiées sur tout ensemble E où les fonctions fet q sont dérivables.

$$(\lambda f)' = \lambda f'$$

$$(f+g)' = f'+g'$$

$$(f \times g)' = f'g+fg'$$

$$(f^n)' = nf'f^{n-1}$$

$$\left(\frac{1}{g}\right)' = \frac{-g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g-fg'}{g^2}$$

Pour les règles de dérivation de l'inverse et du quotient, il faut ici veiller à se placer sur un ensemble E sur lequel q ne s'annule pas.

IV.1.b) Composition

Soient I et J deux intervalles de \mathbb{R} . Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{C}$. Supposons que :

- la fonction f :
 - \times est dérivable sur un intervalle I de \mathbb{R} ,
 - \times telle que : $f(I) \subset J$,
- la fonction q est dérivable sur J.

Alors l'égalité suivante est vérifiée sur l'intervalle I: $(g \circ f)' = f' \times (g' \circ f)$ \times dérivable sur $] - \frac{\pi}{2}, \frac{\pi}{2}[$, \times telle que : $\forall x \in] - \frac{\pi}{2}, \frac{\pi}{2}[$, $\sin'(x) = \cos(x) \neq 0$.

En particulier, pour tout $\alpha \in \mathbb{R}$, pour toute fonction f:

- \times dérivable sur un intervalle I de \mathbb{R} ,
- × à valeurs strictement positives.

Alors l'égalité suivante est vérifiée sur l'intervalle I:

 $(f^{\alpha})' = \alpha f' f^{\alpha-1}$

IV.1.c) Réciproque

Soit $f: \mathbb{R} \to \mathbb{R}$. Supposons que la fonction f est :

- \times bijective d'un intervalle I dans un intervalle J,
- \times dérivable sur I,
- \times telle que : $\forall x \in I, f'(x) \neq 0$.

Alors f^{-1} est dérivable sur J et l'égalité suivante est vérifiée sur l'intervalle

$$J: f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Exemple

- On considère la restriction de la fonction sin à l'intervalle $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ La fonction $\sin \left| \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right|$ est:
 - \times continue sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$,
 - \times strictement croissante sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

Elle réalise donc une bijection de $[-\frac{\pi}{2},\frac{\pi}{2}]$ sur $\sin_{\,|[-\frac{\pi}{2},\frac{\pi}{2}]}\bigl([-\frac{\pi}{2},\frac{\pi}{2}]\bigr)$ où :

$$\sin_{\left|\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right.}\!\left(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right) \;=\; \left[\sin\left(-\frac{\pi}{2}\right),\sin\left(\frac{\pi}{2}\right)\right] \;=\; \left[-1,1\right]$$

On note arcsin la bijection réciproque de $\sin \left| \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right|$

- La fonction $\sin \left| \frac{\pi}{2}, \frac{\pi}{2} \right|$ est:
 - \times bijective de l'intervalle] $-\frac{\pi}{2}, \frac{\pi}{2}$ [dans l'intervalle] -1, 1[,

Alors sa bijection réciproque arcsin est donc dérivable sur]-1,1[.

• De plus, pour tout $x \in]-1,1[$:

$$\arcsin'(x) = \frac{1}{\sin'(\arcsin(x))}$$

$$= \frac{1}{\cos(\arcsin(x))}$$

$$= \frac{1}{\sqrt{1-x^2}}$$

IV.2. Théorème de la bijection

IV.2.a) Un premier théorème

Théorème 1.

Soient a et b deux réels tels que a < b.

Soit $f:[a,b] \to \mathbb{R}$ une fonction:

- \times continue sur [a,b].
- \times strictement croissante sur [a,b].

On a alors:

$$\forall y \in [f(a), f(b)], \exists ! c \in [a, b], \ y = f(c)$$

Autrement dit:

- Pour y fixé dans [f(a), f(b)] l'équation en x : y = f(x) a une unique solution dans l'intervalle [a, b].
- Ou encore, tout élément y dans [f(a), f(b)] possède un unique antécédent par f dans [a, b].

Remarque

Ce théorème est aussi connu sous le nom de Théorème des Valeurs Intermédiaires (cas de la stricte monotonie). Des énoncés similaires existent :

- \times pour tout type d'intervalle ([a, b[,]a, b[,]a, b]).
- \times lorsque f strictement décroissante. Dans ce cas, la conclusion est :

$$\forall y \in [f(b), f(a)], \exists ! c \in [a, b], \ y = f(c)$$

(et on peut encore prendre tout type d'intervalle ...)

IV.2.b) Les fonctions bijectives

Définition Fonction bijective

Soient E et F deux sous-ensembles de \mathbb{R} .

Soit $f: E \to F$ une fonction.

• On dit que f est une bijection de E sur F si :

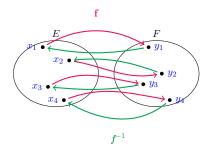
$$\forall y \in F, \exists ! x \in E, \ y = f(x)$$

Si f: E → F définit une bijection de E sur F, alors elle permet de définir la fonction qui à tout réel y ∈ F associe l'unique antécédent de y par f dans l'ensemble E. Cette fonction est notée f⁻¹: F → E et est appelée fonction réciproque de f.

(faire un dessin!)

Représentation graphique.

Soit $f: E \to F$ une application bijective de E sur F.



- Par définition de la bijectivité, tout élément y_i de F possède un unique antécédent x_i dans E par f.
- Par définition de fonction, tout élément x_j de E ne possède qu'une image y_i dans F.

De manière non formelle, si $f:E\to F$ est une bijection de E sur F, alors il y a « exactement autant » d'éléments dans E et dans F.

Graphiquement, cela se traduit par le fait que l'on peut relier les x_i au y_i :

- \times par les flèches rouges. C'est la fonction $f: E \to F$.
- \times par les flèches vertes, obtenues en orientant dans l'autre sens les flèches rouges. C'est la fonction $f^{-1}: F \to E$.

Proposition 12.

Soit $f: E \to F$ une bijection de E sur F.

 $Et \ f^{-1}: F \to E \ sa \ r\'{e}ciproque.$

On a alors:

1)
$$\forall x \in E, \forall y \in F, \ (y = f(x) \Leftrightarrow x = f^{-1}(y))$$

2)
$$\forall y \in F, \ f(f^{-1}(y)) = y$$
 $c'est-\grave{a}-dire : f \circ f^{-1} = \mathrm{id}_F$

3)
$$\forall x \in E, \ f^{-1}(f(x)) = x \quad \text{c'est-à-dire} : \quad f^{-1} \circ f = \mathrm{id}_E$$

4) $f^{-1}: F \to E$ est une bijection de F sur E.

Démonstration.

- 1) Soient $x \in E$ et $y \in F$. On procède par double implication.
 - (\Rightarrow) Supposons : y = f(x). La variable x est donc un antécédent de y par la fonction f. C'est même l'unique antécédent de y par f car f est bijective. Ainsi, par définition de la fonction $f^{-1}: x = f^{-1}(y)$.
 - (\Leftarrow) Supposons : $x = f^{-1}(y)$. Par définition de la fonction f^{-1} , l'élément $f^{-1}(y)$ est l'unique antécédent de y par la fonction f. En particulier, x est un antécédent de y par f. Ainsi : y = f(x).
- 2) Soit $y \in F$. Par définition de f^{-1} , l'élément $f^{-1}(y)$ est l'unique x dans E tel que y = f(x). Ainsi : $f(f^{-1}(y)) = f(x) = y$
- 3) Soit $x \in E$. Notons y = f(x). On obtient : $x = f^{-1}(y)$ (d'après la propriété 1)). Ainsi : $f^{-1}(f(x)) = f^{-1}(y) = x$
- 4) On doit démontrer : $\forall v \in E, \exists ! u \in F, \ v = f^{-1}(u)$. Soit $v \in E$.
 - D'après la propriété 3) : $f^{-1}(f(v)) = v$. Ainsi, en notant u = f(v), on a bien trouvé un élément $u \in F$ tel que $f^{-1}(u) = v$.
 - Démontrons l'unicité de l'élément $u \in F$. S'il existe $t \in F$ tel que $f^{-1}(t) = v$, alors par la propriété 1) : t = f(v). Ainsi, t = f(v) = u.

Remarque

Soit $f: E \to F$ une fonction bijective de E dans F et $x \in E$, $y \in F$ Les extensions précédentes peuvent aussi être appliquées à ce théorème : deux éléments tels que y = f(x). D'après la propriété 1), on a alors aussi $x = f^{-1}(y)$. On a donc:

- \times x est l'antécédent de y par f.
- \times y est l'image de x par f.
- \times x l'image de y par f^{-1} .
- \times y est l'antécédent de x par f^{-1} .

IV.2.c) Le théorème de la bijection

Théorème 2. Théorème de la bijection

Soit a et b deux réels tels que a < b.

Soit $f:[a,b] \to \mathbb{R}$ une fonction:

- \times continue sur [a,b].
- \times strictement croissante sur [a, b].

On a alors:

- 1) f est une bijection de [a,b] sur [f(a),f(b)].
- 2) De plus, sa bijection réciproque $f^{-1}:[f(a),f(b)]\to [a,b]$ est :
 - \times continue sur [f(a), f(b)].
 - \times strictement croissante sur [f(a), f(b)]

Démonstration.

- 1) C'est l'énoncé du TVI traduit avec le vocabulaire des fonctions bijectives.
- 2) On en reparlera ...

Remarque

on peut l'écrire avec des intervalles du type [a, b[, a, b], a, b[]; si la fonction f initiale est strictement décroissante, la conclusion sera alors la stricte décroissance de f^{-1} .

Par exemple:

Soit
$$f:]a,b] \to \mathbb{R}$$
 une fonction:

× continue sur $]a,b]$

× strictement décroissante sur $]a,b]$

• f est une bijection de $]a,b]$ sur $[f(b),f(a)[$

• $f^{-1}: [f(b),f(a)[\to]a,b]$ est:

× continue sur $[f(b),f(a)[$

× strictement croissante sur $[f(b),f(a)[$

Exercice 5

Montrer que l'équation $e^x - \frac{e}{x} = x$ d'inconnue $x \in]0, +\infty[$ admet une unique solution notée α , puis montrer : $1 < \alpha < 2$.