Colles

Semaine 25: 31 mars - 4 avril

I. Questions de cours

Exercice 1

Soit f une fonction continue par morceaux sur un intervalle I.

Soit $x_0 \in I$.

Montrer que l'application suivante est continue sur ${\cal I}$:

$$F_0 : I \rightarrow \mathbb{R}$$

$$x \mapsto \int_{x_0}^x f(t) dt$$

Exercice 2

1. Calculer les intégrales suivantes :

a)
$$\int_0^1 \frac{x^2}{x^6+1} dx$$

b)
$$\int_{1}^{2} \frac{1}{x + 2\sqrt{x}} dx$$

2. Démontrer que la suite $\left(\sum_{k=1}^n \frac{1}{\sqrt{n^2+2kn}}\right)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.

Exercice 3

1. Calculer les intégrales suivantes :

a)
$$\int_0^1 \frac{x}{\sqrt{1-x^4}} dx$$

b)
$$\int_0^1 \frac{1}{e^x + 1} dx$$

2. Démontrer que la fonction $x \mapsto \int_x^{x^2} \frac{\mathrm{e}^{-t^2}}{t} dt$ est dérivable sur $[1, +\infty[$ et déterminer sa dérivée.

II. Exercices

Dénombrement

Parties d'un ensemble fini

Exercice 4

Donner le cardinal des ensembles suivants, puis expliciter tous leurs éléments.

$$a. \mathcal{P}(\emptyset)$$

c.
$$P(\{1,4\})$$

e.
$$\mathcal{P}(\{\{1\}, 2, 4\})$$

b.
$$P(\{5\})$$

d.
$$\mathcal{P}(\{1,3,4,5\})$$

Les énoncés suivants sont-ils vrai ou faux? Justifier vos réponses.

a.
$$2 \in \{3, \{2\}, \{\{4\}\}, \emptyset\}$$

$$e. \varnothing \subset \mathcal{P}(\{1\})$$

$$b. \{1\} = \{\{1\}\}$$

$$f. \varnothing \in \{1\}$$

$$c. 3 \in \emptyset$$

$$g. \{\{3\}\}$$
 a un élément.

$$d. \varnothing \in \{\varnothing\}$$

h.
$$\{n \in \mathbb{N} \mid 82 \le n \le 98 \text{ et } \exists k \in \mathbb{N}, n = k^2\} = \emptyset$$

Exercice 6

On considère un ensemble E à 6 élements. On cherche à calculer le nombre de couples (A, B) de parties de E telles que $A \cup B = X$.

- a. Combien y a-t-il de parties de E à deux éléments? Si A est une partie à deux éléments, combien y a-t-il de parties B telles que $A \cup B = E$?
- b. Plus généralement, combien y a-t-il de parties A à k éléments? Une telle partie A étant donnée, combien y a-t-il de B qui conviennent?
- c. En déduire la solution du problème.
- d. Si on remplace 6 par un n quelconque, que devient la solution?

Exercice 7

Soit n un entier strictement positif et $E = \{1, 2, \dots, n\}$.

- a. Trouver le nombre de couples (x,y) de E^2 tels que x>y.
- **b.** Trouver le nombre de couples (x, y) de E^2 tels que x = y.
- c. Trouver le nombre de triplets (x, y, z) de E^3 tels que x < y < z.

Dénombrement

Dénombrement : cas pratiques

Exercice 8

On tire 5 atouts dans un jeu de tarot.

Combien y a-t-il de tirages vérifiant les conditions suivantes?

- a. Au moins un atout est multiple de 5.
- b. Il y a exactement un multiple de 5 et un multiple de 3.
- c. On a tiré le 1 ou le 21.

Exercice 9

À l'entrée d'un immeuble, on dispose d'un clavier de douze touches :

- × trois lettres : A, B et C
- \times neuf chiffres non nuls: 1, 2, 3, 4, 5, 6, 7, 8 et 9

Le code déclenchant l'ouverture de la porte peut être changé par le régisseur. Ce code est formé d'une lettre suivie d'un nombre de trois chiffres.

- a. Dans cette question, on considère que les trois chiffres du code ne sont pas forcément distincts. Combien de codes commençant par la lettre A le régisseur peut-il proposer?
- b. Dans cette question, on considère que le code ne contient que des chiffres distincts. Combien de codes le régisseur peut-il proposer?

De combien de manières peut-on classer quatre personnes (sans qu'il y ait d'ex-æquo) ? Et si les ex-æquo sont possibles ?

Exercice 11

Combien y a-t-il d'anagrammes de MAISON? de RADAR? de MISSISSIPI? de ABRACADABRA?

Exercice 12

Trois locataires laissent, en sortant, la clé numérotée de leur appartement à la gardienne de l'immeuble. Celle-ci s'amuse à enlever les numéros et rend au hasard les clés aux trois personnes à leur retour. On notera R_i $(i \in [1,3])$ l'ensemble des répartitions telles que le *i*-ème locataire retrouve sa clé.

- 1) Décrire l'ensemble $R_1 \cap \overline{R_3}$.
- 2) Écrire en fonction de R_1 , R_2 et R_3 :
 - a. l'ensemble A des répartitions telles que les trois personnes retrouvent leur clé.
 - b. l'ensemble B des répartitions telles que deux personnes seulement retrouvent leur clé.
 - c. l'ensemble C des répartitions telles que le premier locataire est le seul à retrouver sa clé.
 - d. l'ensemble D des répartitions telles qu'une personne seulement retrouve sa clé?
- 3) Déterminer le cardinal des ensembles de la question précédente.

Exercice 13

On monte un escalier de n marches. À chaque pas, on franchit soit une marche, soit deux marches. On note p_n le nombre de façon d'arriver à la n-ième marche et on voudrait expliciter la suite (p_n) .

- **a.** Que valent p_1 et p_2 ?
- **b.** Déterminer une relation de récurrence liant p_n , p_{n-1} et p_{n-2} .
- c. En déduire une expression de p_n en fonction de n.
- d. On appelle k le nombre de pas de deux marches qu'on a fait en gravissant l'escalier. Quelles sont les valeurs possibles pour k?
- e. Calculer en fonction de k le nombre total de pas nécessaires.
- f. Déterminer le nombre de façon de grimper l'escalier, sachant qu'on a fait k pas de deux marches.
- g. En déduire une expression de p_n sous forme d'une somme.

Formule du crible

Exercice 14

Une tentative d'homicide par balle a eu lieu au cours d'un bal. La police a retrouvé dix-huit personnes présentes au moment du drame. Elle leur a demandé de répondre soit par oui, soit par non, à chacune des questions suivantes :

- a. Avez-vous entendu une détonation?
- b. Avez-vous vu quelqu'un s'enfuir?
- × Dix personnes ont répondu « oui » à la première question.
- × Six personnes ont répondu « non » à la deuxième question.
- × Cinq personnes ont répondu « non » aux deux questions.

Combien de personnes ont répondu « oui » aux deux questions?

Nombre d'applications

Exercice 15

Soit $n \in \mathbb{N}^*$. Combien y a-t-il de surjections de [1, n+1] dans [1, n]?

Exercice 16

- a. Combien y a-t-il de suites composées de 5 éléments de [1,10]?
- b. Combien y a-t-il de suites composées de 5 éléments distincts de [1, 10]?
- c. Combien y a-t-il de suites strictement croissantes composées de 5 éléments de $[\![1,10]\!]$?
- d. Généraliser les questions précédentes pour des suites possédant n éléments dans l'ensemble [1, p].

Exercice 17

Dans cet exercice, on souhaite déterminer le nombre d'applications croissantes de [1, n] dans [1, p].

1) Démontrer que ce nombre est égal au nombre de suites croissantes composées de n éléments de [1, p].

On propose maintenant de coder une telle suite croissante par la suite de symboles suivante :

- × on écrit succesivement chaque 1 utilisé (éventuellement aucun) et on termine par une barre |,
- \times on écrit succesivement chaque 2 utilisé (éventuellement aucun) et on termine par une barre \mid ,

× ...

- \times on écrit succesivement chaque p utilisé (éventuellement aucun) et on s'arrête sans écrire de | à la fin.
- 2) Combien y a-t-il de symboles | utilisés dans ce codage?
- 3) Quelles sont les applications représentées par les codages suivants?

4) Conclure quant au nombre d'applications croissantes de [1, n] dans [1, p].

Intégration

Intégrales fonctions de leurs bornes

Exercice 18

Dériver les fonctions suivantes.

$$a. H_1: x \mapsto \int_3^x e^{\sqrt{t}} dt$$

b.
$$H_2: x \mapsto \int_n^x e^{\sqrt{t}} dt$$
 où $n \in \mathbb{N}$

$$c. \ H_3: x \mapsto \int_x^{n^2} e^{\sqrt{t}} dt \text{ où } n \in \mathbb{N}$$

d.
$$H_4: x \mapsto \int_1^{x^2} e^{5\sqrt{3 \ln t}} dt$$

e.
$$H_5: x \mapsto \int_{x^2}^{x^3} \frac{dt}{1+t+t^2}$$

f.
$$H_6: x \mapsto \int_{-x}^{x} \sqrt{1+u^2} \ du$$

$$g. H_7: x \mapsto \int_{\sqrt{x}}^{e^x} \frac{s}{\ln s} ds$$

Exercice 19

- 1. Démontrer : $\forall t \in \mathbb{R}, \ 0 \leqslant 1 \cos(t) \leqslant \frac{t^2}{2}$.
- 2. En déduire : $\lim_{x \to 0^+} \int_x^{3x} \frac{\cos(t)}{t} dt = \ln(3)$.

On note $F: x \mapsto \int_{x}^{2x} \sqrt{1+t^4} \ dt$.

- a. Donner l'ensemble de définition de F, puis donner le signe de F.
- **b.** Montrer que pour tout $t \ge 0$: $t^2 \le \sqrt{1+t^4} \le 1+t^2$.
- c. En déduire un encadrement de F(x), pour $x \in [0, +\infty[$.
- **d.** Montrer alors que : $F(x) \sim \frac{7}{x \to +\infty} x^3$.
- e. Démontrer que F réalise une bijection de \mathbb{R}^+ vers un intervalle à préciser.

Exercice 21

On considère la fonction :

$$F: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \int_{x}^{2x} \frac{dt}{\sqrt{t^4 + t^2 + 1}}$$

- 1. Montrer que F est impaire.
- 2. Montrer que F est indéfiniment dérivable sur \mathbb{R} . Préciser la dérivée de F et étudier ses variations.
- 3. a) Montrer que la restriction de F sur \mathbb{R}_+ présente un maximum en un point dont on précisera le paramètre.
 - b) Déterminer, à l'aide de la méthode des trapèzes, une valeur de ce maximum avec une précision de 10^{-2} .
- 4. a) Démontrer: $\forall x \in \mathbb{R}_+^*, F(x) \leqslant \int_x^{2x} \frac{dt}{t^2}$.
 - b) En déduire, si elle existe, la limite de F en $+\infty$.
- $\boldsymbol{5}$. Donner l'allure du graphe de F.

Exercice 22

- 1. Démontrer : $\forall t \in [0,1], t \leqslant e^t 1 \leqslant e t$.
- 2. En déduire : $\int_1^x \frac{e^t}{t} dt \sim_{t\to 0^+} \ln(x).$

Exercice 23

On considère la fonction : F : \mathbb{R} \rightarrow \mathbb{R}

$$x \mapsto \int_{-x}^{x} \sqrt{2 - \left(\sin(t)\right)^2} dt$$

- 1. Montrer que F est impaire.
- 2. Montrer que F est indéfiniment dérivable sur \mathbb{R} . Préciser la dérivée de F et étudier ses variations.
- 3. Calculer un développement limité de F à l'ordre 3. Que peut-on en déduire sur le graphe de F?
- 4. a) Démontrer : $\forall x \in \mathbb{R}_+^*, F(x) \geqslant 2x$.
 - b) En déduire, si elle existe, la limite de F en $+\infty$. La suite de la question a pour objectif de préciser ce résultat.
 - c) Pour tout $x \in \mathbb{R}_+$, justifier l'existence de $k \in \mathbb{N}$ tel que : $k\pi \leqslant x \leqslant (k+1)\pi$. Puis démontrer :

$$F(x) = 2k \int_0^{\pi} \sqrt{2 - (\sin(t))^2} dt + 2 \int_{k\pi}^{x} \sqrt{2 - (\sin(t))^2} dt$$

d) En déduire que la fonction $x \mapsto F(x) - \frac{F(\pi)x}{\pi}$ est bornée et trouver un équivalent de F au voisinage de $+\infty$.

5

On considère la fonction :

$$F: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \int_{\cos(x)}^{\sin(x)} \sqrt{1 - t^2} dt$$

- 1. Déterminer le domaine de définition de F et préciser son domaine d'étude.
- 2. Montrer que F est continûment dérivable sur \mathbb{R} . Préciser la dérivée de F et étudier ses variations.
- 3. Donner l'allure du graphe de F.

Exercice 25

Soit $n \in \mathbb{N}^*$. On considère la fonction : $F : \mathbb{R}_+ \to \mathbb{R}$

$$x \mapsto \int_0^x \frac{\mathrm{e}^t}{1+t^n} dt$$

- 1. Justifier : $F \in \mathcal{C}^1(\mathbb{R}_+)$. Préciser la dérivée de F et étudier ses variations.
- 2. a) Démontrer : $\forall x \in \mathbb{R}_+, F(x) \geqslant \frac{1}{1+x^n} \int_0^x e^t dt$.
 - b) En déduire, si elle existe, la limite de F en $+\infty$.
- 3. Démontrer que F réalise une bijection de \mathbb{R}_+ sur lui-même. On désignera sa bijection réciproque par G.
- 4. Montrer que G est continûment dérivable sur \mathbb{R}_+ et qu'elle est solution de l'équation différentielle : $y' = \frac{1+y^n}{e^y}$.

Exercice 26

On considère la fonction : F : $[-2\pi, 2\pi] \setminus \{0\} \rightarrow \mathbb{R}$

$$x \mapsto \int_{x}^{2x} \frac{\sin(t)}{t^2} dt$$

- 1. Montrer que F est paire.
- **2.** a) Démontrer : $F(\pi) = \int_0^{\pi} \left(\frac{1}{(u+2\pi)^2} \frac{1}{(u+\pi)^2} \right) \sin(u) \ du$.
 - b) En déduire le signe de $F(\pi)$.
- 3. En s'inspirant de la question précédente, déterminer le signe de $F(2\pi)$.
- 4. a) Montrer que F est indéfiniment dérivable sur son ensemble de définition. Préciser la dérivée de F et étudier ses variations.
 - b) Montrer alors que F s'annule exactement quatre fois et isoler chacun de ses points d'annulation.
- 5. a) Vérifier: $\forall t \in \mathbb{R}_+^*, \left| \sin(t) t \right| \leqslant \frac{t^3}{6}$.
 - b) En déduire que F se prolonge par continuité en 0 en une fonction G.
 - c) Préciser la valeur prise par la fonction G en 0, puis montrer que G est continûment dérivable sur $[-2\pi, 2\pi]$.

Sommes de Riemann

Exercice 27

Calculer les limites des suites ci-dessous.

a.
$$u_n = \sum_{k=1}^n \frac{k}{n^2 + k^2}$$

b.
$$v_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + 2kn}}$$

Exercice 28

Calculer, en utilisant une somme de Riemann, les intégrales de $x \mapsto x$, $x \mapsto e^x$ et $x \mapsto \sin(\pi x)$ sur [0,1].

Exercice 29

Soit $x \in]-1, +\infty[$.

1. Démontrer, pour tout $n \in \mathbb{N}^*$:

$$\prod_{k=0}^{n-1} \left(1 - 2x \cos \left(\frac{k\pi}{n} \right) + x^2 \right) = \frac{(x-1)(x^{2n} - 1)}{x+1}$$

2. En déduire la valeur de $\int_0^{\pi} \ln (1 - 2x \cos(t) + x^2) dt$.

Exercice 30

Déterminer, si elle existe, la limite de chacune des suites suivantes.

1.
$$\left(\sum_{k=1}^{n} \frac{n+k}{n^2+k^2}\right)_{n\in\mathbb{N}^*}$$

4.
$$\left(\left(\prod_{k=1}^{n} \left(1 + \frac{k}{n} \right)^k \right)^{\frac{1}{n^2}} \right)_{n \in \mathbb{N}^*}$$

2.
$$\left(\sum_{k=1}^{n} \frac{k^2}{n^2 (k^3 + n^3)^{\frac{1}{3}}}\right)_{n \in \mathbb{N}^*}$$

5.
$$\left(\left(\frac{(2n)!}{n! \, n^n} \right)^{\frac{1}{n}} \right)_{n \in \mathbb{N}^*}$$

3.
$$\left(\sum_{k=1}^{n} \frac{k}{n^2} \sin\left(\frac{k\pi}{n+1}\right)\right)_{n \in \mathbb{N}^*}$$

6.
$$\left(\ln(n) - \sum_{p=1}^{n} \frac{\ln(p+n)}{n}\right)_{n \in \mathbb{N}^*}$$

7

Exercice 31

Soit $f \in \mathcal{C}^0([0,1],\mathbb{R}_+^*)$. On considère la fonction :

$$F : [0,1] \to \mathbb{R}$$
$$x \mapsto \int_0^x f(t) dt$$

- 1. Montrer que F induit une bijection continue à réciproque continue de [0,1] sur F([0,1]).
- 2. Montrer que, pour tout $n \in \mathbb{N}^*$ et tout $p \in [0, n-1]$, il existe un unique $x_{n,p} \in [0, 1]$ tel que :

$$\int_0^{x_{n,p}} f(t) \ dt = \frac{p}{n} \int_0^1 f(t) \ dt$$

3. Pour tout $n \in \mathbb{N}^*$, on pose : $S_n = \frac{1}{n} \sum_{n=0}^{n-1} f(x_{n,p})$. Démontrer :

$$\lim_{n \to +\infty} S_n = \left(\int_0^1 (f(t))^2 dt \right) \left(\int_0^1 f(t) dt \right)^{-1}$$

Pour tout $n \in \mathbb{N}^*$, on pose : $u_n = \sum_{k=1}^n \sin\left(\frac{k}{n}\right) \sin\left(\frac{k}{n^2}\right)$

- 1. Vérifier, pour tout $x \in \mathbb{R}_+ : \left| \sin(x) x \right| \leqslant \frac{x^3}{6}$.
- 2. Démontrer, pour tout $n \in \mathbb{N}^*$: $\left| u_n \sum_{k=1}^n \frac{k}{n^2} \sin\left(\frac{k}{n}\right) \right| \leqslant \frac{1}{6n^2}$.
- 3. Démontrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.

Sommation discrète et intégration

Exercice 33

On considère la fonction:

$$f : \mathbb{R}_{+}^{*} \to \mathbb{R}$$
$$x \mapsto \frac{\ln(x)}{x^{2}}$$

- 1. Étudier les variations de f.
- 2. Pour tout $n \in \mathbb{N} \setminus \{0,1\}$, on pose : $u_n = \sum_{p=2}^n f(p)$.
 - a) Pour tout $n \in \mathbb{N} \setminus \{0, 1, 2\}$, comparer u_n et la valeur de l'intégrale I_n de la restriction de f sur [1, n].
 - b) Majorer la suite $(I_n)_{n\in\mathbb{N}^*}$.
 - c) En déduire le comportement asymptotique de la suite $(u_n)_{n\geqslant 2}$.

Exercice 34

Déterminer, si elle existe, la limite de la suite $\left(\sum_{k=1}^{n} \frac{1}{\sqrt{nk}}\right)_{n \in \mathbb{N}^*}$

Croissance de l'intégrale

Exercice 35

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b. Soient f et g deux fonctions réelles définies et continues sur [a,b].

1. On considère la fonction :

$$\varphi : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \int_a^b (f(t) + x g(t))^2 dt$$

Montrer que φ est une fonction polynomiale positive et que, sauf dans un cas particulier que l'on identifiera, son degré est 2.

2. Établir, dans tous les cas, la formule :

$$\left| \int_a^b f(t) g(t) dt \right| \leqslant \sqrt{\int_a^b (f(t))^2 dt} \int_a^b (g(t))^2 dt$$

8

3. Démontrer :
$$\sqrt{\int_a^b \left(f(t)+g(t)\right)^2 dt} \leqslant \sqrt{\int_a^b \left(f(t)\right)^2 dt} + \sqrt{\int_a^b \left(g(t)\right)^2 dt}$$
.

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b. Soit $f \in \mathcal{C}^0([a,b])$. Démontrer :

$$\int_{[a,b]} |f| = \left| \int_{[a,b]} f \right| \Leftrightarrow f \text{ positive ou négative}$$

Le résultat est-il encore vrai si f est seulement continue par morceaux sur le segment [a, b]?

Exercice 37

Soit $n \in \mathbb{N}^*$. Soit $f \in \mathcal{C}^0([0,1])$.

- 1. On suppose que f s'annule au plus n fois.
 - a) Justifier l'existence d'une fonction polynomiale P de degré au plus n dont les racines sont les points d'annulation de f en lesquels la fonction f « change de signe » et sont simples.
 - b) Montrer alors que l'intégrale de $f \times P$ sur [0,1] est nulle.
- 2. On suppose que, pour tout $k \in [0, n]$, l'intégrale $\int_0^1 x^k f(x) dx$ est nulle. Démontrer que la fonction f admet au moins n+1 points d'annulation.

Exercice 38

Soit $f \in \mathcal{C}^0([0,\pi])$.

- 1. On suppose que f ne s'annule pas sur $]0,\pi[$. Montrer que l'intégrale de la fonction $x\mapsto f(x)\sin(x)$ est non nulle.
- 2. On suppose qu'il existe $\alpha \in]0, \pi[\setminus \{\frac{\pi}{2}\}\)$ tel que la restriction de f sur $[0, \alpha]$ ne prenne que des valeurs positives et la restriction de f sur $[\alpha, \pi]$ ne prenne que des valeurs négatives.
 - a) Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que la restriction sur $[0, \pi]$ de $x \mapsto \sin(x) + \lambda \cos(x)$ s'annule une unique fois, au point α .
 - b) Montrer que l'intégrale sur $[0, \pi]$ de la fonction $x \mapsto (\sin(x) + \lambda \cos(x)) f(x)$ est nulle si et seulement si f l'est.
- 3. On suppose:

$$\int_0^{\pi} f(x) \sin(x) \ dx = \int_0^{\pi} f(x) \cos(x) \ dx = 0$$

Montrer que f s'annule au moins deux fois.

Autour de la formule de Taylor

Exercice 39

Pour tout $(n,p) \in \mathbb{N}^2$, on pose : $I_{n,p} = \int_0^1 t^n (1-t)^p dt$.

- 1. Pour tout $(n,p) \in \mathbb{N} \times \mathbb{N}^*$, exprimer $I_{n,p}$ en fonction de $I_{n+1,p-1}$. En déduire, pour tout $(n,p) \in \mathbb{N}^2$, une expression explicite de $I_{n,p}$.
- 2. En interprétant, pour tout $(n,p) \in \mathbb{N}^2$, $I_{n,p}$ comme le reste dans une formule de Taylor-Lagrange, retrouver le résultat de la question précédente.

Soit $f \in \mathcal{C}^2(\mathbb{R})$ telle que |f| et |f''| soient majorées respectivement par M et M''.

1. a) En appliquant deux fois une inégalité de Taylor-Lagrange à la fonction f à l'ordre 2, montrer que pour tout réel strictement positif a:

$$|2a f'(0) + f(-a) - f(a)| \leq M'' a^2$$

- b) En déduire : $|f'(0)| \leq 2\sqrt{MM''}$.

 (on pourra utiliser une valeur particulière de a dans l'estimation précédente)
- 2. En appliquant la question précédente aux fonctions $t \mapsto f(t+x)$ pour tout $x \in \mathbb{R}$, montrer que |f'| est bornée et majorer alors sa borne supérieure par un réel ne dépendant que des bornes supérieures de |f| et |f''|.

Calculs de primitives et d'intégrales

Exercice 41

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b. Soit $f \in \mathcal{C}^0([a,b])$ telle que : $\forall x \in [a,b], f(a+b-x) = f(x)$.

1. Démontrer :
$$\int_a^b t f(t) dt = \frac{a+b}{2} \int_a^b f(t) dt$$
.

2. Calculer alors :
$$\int_0^{\pi} \frac{t \sin(t)}{1 + (\cos(t))^2} dt.$$

Exercice 42

En faisant les changements de variables indiqués, calculer les primitives des fonctions suivantes.

1.
$$]0, \frac{\pi}{3}[\rightarrow \mathbb{R}$$
 et poser $t = \cos(x)$.
 $x \mapsto \frac{1 - \cos(2x)}{\sin(3x)}$

2.
$$\mathbb{R}_+^* \to \mathbb{R}$$
 et poser $t = e^x$.
 $x \mapsto \frac{1}{2\operatorname{ch}(x) + \operatorname{sh}(x) + 1}$

3.
$$]2, +\infty[\rightarrow \mathbb{R}$$
 et poser $t = \sqrt{x-2}$

$$x \mapsto \frac{1}{x + \sqrt{x-2}}$$

4.
$$[0,\pi] \rightarrow \mathbb{R}$$
 et poser $t = \tan\left(\frac{x}{2}\right)$.
 $x \mapsto \frac{1}{3\sin(x) + 1}$

5.
$$\mathbb{R} \to \mathbb{R}$$
 et poser $t = \cos(2x)$.
 $x \mapsto \frac{\cos^3(x) \sin^3(x)}{1 + \sin^2(x)}$

Exercice 43

Calculer les intégrales suivantes par changement de variable. (changement non précisé!)

a.
$$\int_{3}^{4} \frac{t}{\sqrt{t-2}} dt$$
 c. $\int_{2}^{3} \ln(\sqrt[3]{t} - 1) dt$

b.
$$\int_{1}^{3} \frac{1}{t\sqrt{2t+1}} dt$$
 d. $\int_{1}^{\sqrt{2}} \frac{dt}{t\sqrt{t+1}}$

Soit $\varepsilon \in \{-1, 1\}$. On considère la fonction $f: t \mapsto \sqrt{1 + \varepsilon t^2}$.

- 1. À l'aide du changement de variable $t = \sin(u)$, trouver une primitive de f considérée sur]-1,1[lorsque $\varepsilon = -1$.
- 2. À l'aide du changement de variable $t=\operatorname{sh}(u)$, trouver une primitive de f considérée sur $\mathbb R$ lorsque $\varepsilon=1$.
- 3. À l'aide d'une intégration par parties judicieuse, retrouver les résultats des questions précédentes.

Exercice 45

Pour tout $x \in]-1, +\infty[$, on pose : $I(x) = \int_0^x \frac{dt}{1+t^3}$.

- 1. Pour tout $x \in]-1,+\infty[$, donner une expression explicite de I(x).
- 2. Pour tout $x \in]-1, +\infty[$, calculer $\int_0^x \frac{dt}{(1+t^3)^2}$ en fonction de x et de I(x).
- 3. Pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, calculer $\int_0^x \frac{dt}{y^3 + t^3}$ en fonction de x,y et de valeurs prises par la fonction I.

Exercice 46

Pour tout $x \in \mathbb{R} \setminus \{-1, 1\}$, on pose : $I(x) = \int_0^{\pi} \ln(1 - 2x \cos(t) + x^2) dt$.

- 1. Montrer que la fonction I est paire.
- 2. Démontrer : $\forall x \in \mathbb{R} \setminus \{-1, 1\}, I(x^2) = 2I(x)$.
- 3. Démontrer : $\forall x \in \mathbb{R} \setminus \{-1, 0, 1\}, I\left(\frac{1}{x}\right) = I(x) 2\pi \ln \left(|x|\right).$
- 4. Démontrer : $\forall x \in \mathbb{R} \setminus \{-1, 1\}, \ 2\pi \ln \left(\left| 1 |x| \right| \right) \leqslant I(x) \right| \leqslant 2\pi \ln \left(1 + |x| \right)$.
- 5. Pour tout $x \in \mathbb{R} \setminus \{-1, 1\}$, calculer I(x).