Colles

Semaine 19:3 février - 7 février

I. Questions de cours

Exercice 1

Énoncer et démontrer la formule de Taylor polynomiale.

Exercice 2

Déterminer les racines carrées du nombre complexe 1-2i.

Exercice 3

Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme P défini par : $P(X) = X^4 + 2$.

II. Exercices

Structure algébrique de $\mathbb{K}[X]$

Exercice 4

Soit $n \in \mathbb{N}^*$. Soit $P \in \mathbb{K}[X]$ de degré n.

1. Montrer que P' divise P si et seulement s'il existe $\lambda \in \mathbb{K}$ tel que :

$$(X - \lambda) P'(X) = n P(X)$$

2. En déduire les polynômes de $\mathbb{K}[X]$ divisibles par leur polynôme dérivé. On pourra décomposer le polynôme P introduit en question 1. sur la famille $(1, X - \lambda, \dots, (X - \lambda)^n)$.

Exercice 5

Soit $P \in \mathbb{C}[X]$. Déterminer le degré du polynôme P(X+1) - P(X) en fonction du degré de P.

Exercice 6

Soit $P \in \mathbb{R}[X]$ tel que $\forall n \in \mathbb{Z}, P(n) = P(n+1)$. Montrer que $\deg(P) \leq 0$.

Fonctions polynomiales, racines

Exercice 7

On considère le polynôme P défini par $P(X) = 3X^2 - X - 2$.

- a. Montrer que 1 est une racine de P, et trouver un polynôme Q tel que : P(X) = (X-1)Q(X).
- **b.** Étudier le signe de P sur \mathbb{R} .

Exercice 8

Démontrer par l'absurde qu'un polynôme de degré 2 ne peut avoir 3 racines distinces ou plus.

Exercice 9

- 1. Déterminer les polynômes $P \in \mathbb{C}[X]$ tel que $\forall x \in \mathbb{R}, \ P(x) = x$.
- 2. En déduire qu'il n'existe pas de polynôme $P \in \mathbb{C}[X]$ tel que $\forall z \in \mathbb{C}, \ P(z) = \bar{z}$.

Exercice 10

Pour $T \in \mathbb{C}^*$, déterminer les polynômes de $\mathbb{C}[X]$ dont la fonction polynomiale associée est T-périodique.

Exercice 11

Soit P une fonction polynomiale paire. Montrer que P n'a que des puissances paires.

Exercice 12

Trouver tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = P(X-1)P(X+1)$. On pourra en particulier s'intéresser à une racine de module maximal d'un polynôme P non nul satisfaisant l'équation.

Exercice 13

Soit $p \in \mathbb{N}$, et $P \in \mathbb{R}[X]$ de degré 2p+1. On suppose que, pour tout $k \in [0, 2p+1], P^{(k)}(0) < 0$.

- 1. Montrer que P admet au moins une racine réelle.
- 2. Montrer que toutes les racines réelles de P sont strictement négatives.

Exercice 14

Soit $(a, b) \in \mathbb{R}^2$. Soit $(n, p) \in \mathbb{N}^* \times \mathbb{N}$. On pose :

$$P(X) = ((X-a)^n (X-b)^n)^{(p)}$$

Un des objectifs de l'exercice est de calculer la valeur prise par la fonction polynomiale \tilde{P} associée à P au point a.

- 1. On suppose : p > 2n. Que vaut P? Conclure quant à l'objectif de cet exercice.
- 2. On suppose : p < n. Justifier le fait que a est racine de P. En déduire la valeur de $\tilde{P}(a)$.
- 3. On suppose : $n \leq p \leq 2n$.
 - a) Pour tout $(\lambda, m, k) \in \mathbb{R} \times \mathbb{N}^2$ vérifiant $k \leq m$, donner une expression explicite du polynôme dérivé d'ordre k de $(X \lambda)^m$.
 - b) En utilisant alors la formule de Leibniz, démontrer :

$$\tilde{P}(a) = \frac{p! \, n!}{(p-n)! \, (2n-p)!} \, (a-b)^{2n-p}$$

Exercice 15

Déterminer les polynômes $P \in \mathbb{K}[X]$ tels que $P \circ P = P$.

Exercice 16

Déteminer les polynômes $P \in \mathbb{K}[X]$ tels que $(P')^2 = 4P$.

Exercice 17

On considère l'application:

$$\begin{array}{cccc} \Delta & : & \mathbb{R}[X] & \to & \mathbb{R}[X] \\ & P & \mapsto & P(X+1) - P(X) \end{array}$$

1. Montrer pour tout $q \in \mathbb{N}^*$ et tout $P \in \mathbb{R}[X]$:

$$\Delta^{q}(P) = \sum_{k=0}^{q} (-1)^{q-k} {q \choose k} P(X+k)$$

en notant Δ^q la composée de Δ avec elle-même q fois.

- 2. a) Montrer que pour tout polynôme réel P non nul : $\deg(\Delta(P)) \leq \deg(P) 1$.
 - b) En déduire, pour tout $n \in \mathbb{N}^*$ et tout $P \in \mathbb{R}[X]$ de degré n-1, la valeur de $\Delta^n(P)$.
- 3. Soit $n \in \mathbb{N}^*$. Soit $P \in \mathbb{R}[X]$ de degré n-1. Supposons qu'il existe $r \in \mathbb{R}_+^*$ tel que : $\forall k \in [1, n]$, $\tilde{P}(k) = r^k$. Calculer la valeur de $\tilde{P}(n+1)$.

Exercice 18

On note \mathcal{A} l'ensemble des polynômes de $\mathbb{C}[X]$ vérifiant : $P(X^2) = P \times P(X+1)$.

- 1. Soit P un polynôme non nul de A.
 - a) Montrer que si $a \in \mathbb{C}$ est racine de P, alors il en est de même, pour tout $r \in \mathbb{N}$, de $a^{(2^r)}$.
 - b) En déduire que les racines non nulles de P sont de module 1.
- 2. Soit P un polynôme non nul de A.
 - a) Montrer que si $a \in \mathbb{C}$ est racine de P, alors il en est de même de $(a-1)^2$.
 - b) Quelles sont les racines de P?
- 3. Déterminer explicitement les éléments de A.

Résolution d'équations

Exercice 19

Résoudre dans \mathbb{R} les équations suivantes.

a.
$$x^2 - 5x + 6 = 0$$

d.
$$x^4 + 3x^2 - 10 = 0$$

b.
$$2x^3 - 4x^2 + 3x - 1 = 0$$

e.
$$(x^2 - 3x + 4)^2 = (x^2 + 2x - 5)^2$$

c.
$$x = \sqrt{x} + 2$$

$$f. (2x-3)^2 = (7x+5)^2$$

Exercice 20

Déterminer trois réels a, b et c tels que, pour tout x différent de 0, 1 et -1, on ait :

$$\frac{1}{x^3 - x} = \frac{a}{x - 1} + \frac{b}{x} + \frac{c}{x + 1}$$

Autour de la division euclidienne

Exercice 21

À quelle condition sur $(a, b, c) \in \mathbb{C}^3$ le polynôme $X^4 + aX^2 + bX + c$ est-il divisible par $X^2 + X + 1$?

Exercice 22

Soit $(a,b) \in \mathbb{R}^2$. Soit $P \in \mathbb{R}[X]$.

Déterminer le reste de la division euclidienne de P par (X - a)(X - b) en fonction de valeurs prises par la fonction polynomiale associée à P et par les dérivées de cette dernière.

Exercice 23

Montrer que $\forall n \in \mathbb{N}^*$, le polynôme $A_n = nX^{n+1} - (n+1)X^n + 1$ est divisible par $(X-1)^2$.

Exercice 24

Démontrer que, pour tout $P \in \mathbb{C}[X]$, P(X) - X divise $(P \circ P)(X) - X$.

Exercice 25

Soit $(n,\alpha) \in \mathbb{N}^* \times \mathbb{R}$. Démontrer que $X^2 - 2\cos(\alpha)X + 1$ divise dans $\mathbb{R}[X]$:

$$\cos((n-1)\alpha)X^{n+1} - \cos(n\alpha)X^n - \cos(\alpha)X + 1$$

Exercice 26 Soit $A = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$.

- 1. Trouver un polynôme unitaire $P \in \mathbb{K}_2[X]$ tel que P(A) = 0.
- 2. Calculer A^n pour tout $n \in \mathbb{N}$, à l'aide de la division euclidienne de X^n par P.

Exercice 27

On pose $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $P \in \mathbb{K}[X]$ et soit $a \in \mathbb{K}$.

- 1. Calculer, en fonction de a, P(a), P'(a), le reste de la division euclidienne de P par $(X-a)^2$. En déduire une condition nécessaire et suffisante pour que $(X-a)^2$ divise P.
- 2. Soit $b \in \mathbb{K}$ distinct de a. Calculer, en fonction de a, b, P(a), P(b), le reste de la division euclidienne de P par (X-a)(X-b). En déduire une condition nécessaire et suffisante pour que (X-a)(X-b)divise P.

Exercice 28

On note \mathcal{A} l'ensemble des polynômes de $\mathbb{R}[X]$ tels que $(X-1)^4$ divise P+1 et $(X+1)^4$ divise P-1.

- 1. Soit P un polynôme de A. Démontrer que $(X^2-1)^3$ divise P'.
- 2. Déterminer un élément de A de degré 7.
- 3. Déterminer explicitement les éléments de \mathcal{A} .

Factorisation de polynômes

Exercice 29

Factoriser le polynôme $P(X) = X^4 - 6X^2 + 7X - 6$, sachant qu'il admet deux racines évidentes.

Exercice 30

Factoriser dans $\mathbb{C}[X]$ puis $\mathbb{R}[X]$ le polynôme $P = X^4 + 2$.

Exercice 31

Factoriser dans $\mathbb{R}[X]$ le polynôme $X^{2n} + X^n + 1$.

Exercice 32

Factoriser dans $\mathbb{R}[X]$ le polynôme $6X^4 - 43X^3 + 107X^2 - 108X + 36$ sachant qu'il existe $(\alpha, \beta) \in (\mathbb{R}^*)^2$ tel que ses racines soient α , β , $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$.