Colles

Semaine 14:16 décembre - 20 décembre

I. Questions de cours

Exercice 1

Démontrer que toute suite convergente est bornée.

Exercice 2

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. On note (c_n) la suite définie par :

$$\forall n \in \mathbb{N}^*, \quad c_n = \frac{1}{n} \sum_{k=1}^n u_k$$

Supposons qu'il existe $\ell\in\mathbb{C}$ tel que : $u_n\underset{n\to+\infty}{\longrightarrow}\ell.$ Démontrer :

$$c_n \xrightarrow[n \to +\infty]{} \ell$$

Exercice 3

Énoncer et démontrer le théorème d'encadrement pour des fonctions

Exercice 4

Soit f une fonction monotone sur I =]a, b[(a < b).

(avec
$$a \in \mathbb{R} \cup \{-\infty\}$$
 et $b \in \mathbb{R} \cup \{+\infty\}$)

Démontrer que f admet une limite dans $\mathbb{R} \cup \{-\infty, +\infty\}$ en b. Plus précisément :

a) si
$$f$$
 est croissante sur I , $\lim_{x\to b} f(x) = \begin{cases} \sup_{x\in I} f(x) & \text{si } f \text{ est major\'ee} \\ +\infty & \text{sinon} \end{cases}$

b) si
$$f$$
 est décroissante sur I , $\lim_{x\to b} f(x) = \begin{cases} \inf_{x\in I} f(x) & \text{si } f \text{ est minorée} \\ -\infty & \text{sinon} \end{cases}$

II. Exercices

Suites classiques

Exercice 5

Exercice 5 On considère la suite (u_n) définie par $\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 2u_n + 3^n \end{cases}$

- a. Montrer que la suite (v_n) de terme général $v_n = \frac{u_n}{3^n}$ est une suite arithmético-géométrique.
- **b.** En déduire une expression de u_n .

Exercice 6

On considère la suite (u_n) définie par $\begin{cases} u_0 = 4 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{u_n - 2} + 2 \end{cases}$

- a. Montrer que la suite (u_n) est bien définie et que : $\forall n \in \mathbb{N}, u_n > 2$.
- **b.** On considère la suite (v_n) définie par $v_n = \ln(u_n 2)$. Justifier que (v_n) est bien définie.
- c. Quelle est la nature de la suite (v_n) ?
- **d.** En déduire la formule explicite de u_n .

Exercice 7

Soit (u_n) la suite définie par $\begin{cases} u_0 = 4 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 2\sqrt{u_n} \end{cases}$

- a. Montrer que la suite (v_n) définie par $v_n = \ln(u_n)$ est bien définie.
- **b.** Calculer v_n et déduire la valeur de u_n .

Exercice 8

Exercice 8
On considère la suite (u_n) définie par $\begin{cases} u_0 = 1 \\ u_1 = 4 \\ \forall n \in \mathbb{N}, \ u_{n+2} = \sqrt{u_n u_{n+1}} \end{cases}$

- a. Vérifier que cette suite est bien définie.
- b. Donner une expression explicite de u_n . Comme dans les exercices précédents, on pourra introduire une suite auxiliaire (v_n) bien choisie.

Exercice 9

Soit (u_n) la suite définie par $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{3u_n + 1}{2u_n + 4} \end{cases}$

On introduit la suite auxiliaire (t_n) de terme général :

$$t_n = \frac{2u_n - 1}{u_n + 1}$$

- a. Montrer que (t_n) est une suite géométrique.
- **b.** En déduire une expression de t_n puis de u_n .

Définition de la convergence

Exercice 10

Soit (u_n) une suite convergente vers une limite $\ell \in \mathbb{R}$.

On se propose de montrer que $e^{u_n} \to e^{\ell}$.

a. Soit A > 0. Expliquer pourquoi, à partir d'un certain rang, on a :

$$-A \leqslant u_n - \ell \leqslant A$$

b. En déduire qu'à partir d'un certain rang, on a :

$$-e^A + 1 \leqslant e^{u_n - \ell} - 1 \leqslant e^A - 1$$

- c. En déduire que la suite $(1 e^{u_n \ell})$ tend vers 0.
- d. Conclure.

Exercice 11

Soit (u_n) une suite à termes entiers relatifs. On suppose que (u_n) est convergente.

- 1. Montrer que la limite de la suite (u_n) appartient nécessairement à \mathbb{Z} .
- 2. Montrer que la suite (u_n) est stationnaire.

Exercice 12

Soit (u_n) une suite réelle. On pose :

$$A = \{u_n \mid n \in \mathbb{N}\}\$$

- 1. On suppose que (u_n) diverge vers $+\infty$. Démontrer que A admet un plus petit élément.
- 2. On suppose que (u_n) converge. Démontrer que A admet un plus petit ou un plus grand élément.

Exercice 13 (Autour de Césaro)

Soit (u_n) une suite complexe telle que : $u_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{C}$.

1. On définit une suite (v_n) par :

$$\forall n \in \mathbb{N}^*, \quad v_n = \frac{u_1 + 2u_2 + \dots + nu_n}{n^2} = \frac{1}{n^2} \sum_{k=1}^n k u_k$$

Démontrer : $v_n \underset{n \to +\infty}{\longrightarrow} \frac{\ell}{2}$

2. On définit une suite (w_n) par :

$$\forall n \in \mathbb{N}, \quad w_n = \frac{\binom{n}{0} u_0 + \binom{n}{1} u_1 + \dots + \binom{n}{n} u_n}{2^n} = \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} u_k$$

Démontrer : $w_n \xrightarrow[n \to +\infty]{} \ell$.

Calculs de limites

Exercice 14

a.
$$\lim_{n \to +\infty} \frac{1 - 3n^7 + 5n - n^3}{n^2 + 1}$$

b.
$$\lim_{n \to +\infty} \frac{(-1)^n \ n^2 + 3n}{n^2 + \sqrt{n}}$$

$$c. \lim_{n \to +\infty} \frac{e^{-\sqrt{n}} + 2}{e^{\ln n + 3} - 5}$$

d.
$$\lim_{n \to +\infty} \frac{n^2 e^n - n e^{2n}}{n^3 \ln n - n (\ln n)^3}$$

e.
$$\lim_{n \to +\infty} \frac{(\ln n)^2 + 3n + 1}{\ln n + 5}$$

f.
$$\lim_{n \to +\infty} \frac{n^3 - 5n\sqrt{n} + n - \ln n + n^{-1}}{e^{3n} - e^n + 1 - e^{-n}}$$

$$g. \lim_{n \to +\infty} \sqrt{n^2 + 2} - n$$

$$h. \lim_{n \to +\infty} \sqrt{n^2 + 2n} - \sqrt{n^2 + n}$$

i.
$$\lim_{n \to +\infty} \frac{3^n - 2^n}{3^n + 2^n}$$

$$j$$
. $\lim_{n\to+\infty} 3^n e^{-3n}$

$$k. \lim_{n \to +\infty} \frac{n^n}{n!}$$

Exercice 15

a.
$$\lim_{n \to +\infty} (2^{\frac{1}{n}} + 5^{\frac{1}{n}})^n$$

b.
$$\lim_{n \to +\infty} (1+n^2)^{1/n}$$

c. $\lim_{n\to+\infty} (e^n + \sqrt{2})^{\frac{1}{n^2}}$

d.
$$\lim_{n \to +\infty} \frac{(1 + e^{n^2})^{\frac{1}{n}}}{n \ln n - \sqrt{n}}$$

Exercice 16

a.
$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n$$

b.
$$\lim_{n \to +\infty} n \sqrt{\ln\left(1 + \frac{1}{n^2 + 1}\right)}$$

c.
$$\lim_{n \to +\infty} (2n-3) \ln \left(\frac{n+3}{n+2} \right)$$

d.
$$\lim_{n\to+\infty} \left(1-\frac{1}{n^2}\right)^n$$

Exercice 17

a.
$$\lim_{n \to +\infty} \frac{\sin(n^3)}{n}$$

b.
$$\lim_{n \to +\infty} \frac{n^3 + 5n}{5n^3 + \cos(n) + \frac{1}{n^2}}$$

c.
$$\lim_{n \to +\infty} \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$

d.
$$\lim_{n \to +\infty} \arctan \left(\frac{n^2 - n \cos(n) + (-1)^n}{\ln(n) + n^2} \right)$$

e.
$$\lim_{n \to +\infty} \left(5 \sin \left(\frac{1}{n^2} \right) + \frac{1}{5} \cos(n) \right)^n$$

f.
$$\lim_{n\to+\infty} n + (-1)^n \sqrt{n}$$

Suites extraites

Exercice 18

Montrer que les suites suivantes sont divergentes.

a)
$$\left(\cos\left(\frac{n\pi}{4}\right)\right)$$
 b) $\left(\frac{5n^2 + \sin(n)}{2(n+1)^2\cos\left(\frac{n\pi}{5}\right)}\right)$ c) $\left(\frac{2 + n\sin\left(\frac{n\pi}{2}\right)}{n\cos\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)}\right)$

Exercice 19

- 1. Soit (u_n) une suite réelle croissante. On suppose que (u_n) admet une suite extraite convergente. Démontrer que la suite (u_n) converge.
- 2. Démontrer que si les suites extraites (u_{3n}) , (u_{3n+1}) et (u_{3n+2}) convergent vers le même complexe ℓ , alors (u_n) converge vers ℓ .
- 3. On suppose qu'il existe un réel ℓ tel que pour tout $k \in [2, +\infty[$, la suite $(u_{kn})_{n \in \mathbb{N}}$ converge vers ℓ . Peut-on en déduire la convergence de la suite (u_n) ?

Théorème de convergence monotone / d'encadrement

Exercice 20

Soit la suite définie par $u_n = \frac{5^n}{n!}$ pour tout $n \ge 0$.

- a. Calculer les cinq premiers termes. La suite (u_n) semble-t-elle monotone?
- **b.** Montrer que la suite (u_n) est décroissante à partir de n=4.
- c. Montrer que pour $n \geqslant 5$, $u_{n+1} \leqslant \frac{5}{6} u_n$.
- **d.** Soit la suite géométrique (v_n) de premier terme $v_5 = u_5$ et de raison $\frac{5}{6}$. Montrer que pour tout $n \ge 5$, on a $0 \le u_n \le v_n$.
- e. Déterminer la limite de (u_n) .

Exercice 21

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{u_n} \end{cases}$$

- a. Montrer que la suite est bien définie et à termes strictement positifs.
- **b.** En déduire que (u_n) est monotone.
- c. Pour tout k de N, exprimer $u_{k+1}^2 u_k^2$ en fonction de u_k^2 .
- **d.** En déduire que pour tout n > 0, on a :

$$u_n^2 = 2n + 1 + \sum_{k=0}^{n-1} \frac{1}{u_k^2}$$

5

e. En déduire que pour n non nul, $u_n^2 \ge 2n + 1$ puis la limite de (u_n) .

Suites implicites

Exercice 22

Pour tout $n \in [2, +\infty[$, on définit la fonction $f_n : [0, 1] \to \mathbb{R}$ par :

$$f_n: x \mapsto x^n - nx + 1$$

- 1. Démontrer que, pour tout $n \in [2, +\infty[$, l'équation $f_n(x) = 0$ admet une unique solution. On la note u_n .
- 2. Pour tout $n \in [2, +\infty[$, déterminer le signe de $f_{n+1}(u_n) f(u_n)$. En déduire que (u_n) est monotone.
- 3. Démontrer que la suite (u_n) converge vers 0.
- 4. Démontrer : $u_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.

Suites de la forme $u_{n+1} = f(u_n)$

Exercice 23

Étudier les suites (u_n) définies ci-dessous.

1.
$$\begin{cases} u_0 \geqslant 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 2 \ln(1+u_n) \end{cases}$$
2.
$$\begin{cases} u_0 \geqslant 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{3}{2+u_n} \end{cases}$$
2.
$$\begin{cases} u_0 \geqslant 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{3}{2+u_n} \end{cases}$$

Exercice 24

On définit une suite réelle (u_n) par :

$$\begin{cases} u_0 \in]0, 1[\\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n^2 + 1}{2} \end{cases}$$

- 1. Démontrer que la suite (u_n) converge vers 1.
- 2. Pour tout $n \in \mathbb{N}$, on pose : $v_n = \frac{1}{1 u_n}$. Démontrer que la suite $(v_{n+1} v_n)$ converge vers $\frac{1}{2}$.
- 3. Démontrer, en utilisant le théorème démontré en question 1. de l'exercice ?? :

$$1-u_n \underset{n\to+\infty}{\sim} \frac{2}{n}$$

Suites adjacentes

Exercice 25

Soient (u_n) et (v_n) définies par les relations suivantes :

$$\begin{cases} u_0 = 3 & \text{et } v_0 = 11\\ u_{n+1} = \frac{3u_n + v_n}{4} & \text{et } v_{n+1} = \frac{u_n + 3v_n}{4} \end{cases}$$

- a. Étudier la suite $(v_n u_n)$. Calculer son terme général en fonction de n, quel est son signe? Donner sa limite.
- **b.** Montrer que (u_n) est croissante et (v_n) est décroissante. Que peut-on en déduire?
- c. Étudier la suite $(u_n + v_n)$. Que conclure?

Soit a et b deux réels positifs. Soient (u_n) et (v_n) les suites définies par :

$$\begin{cases} u_0 = a & \text{ET } v_0 = b \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n \, v_n} \\ \forall n \in \mathbb{N}, \ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

1. a) Démontrer que les suites (u_n) et (v_n) sont bien définies, puis :

$$\forall n \in \mathbb{N}^*, \ u_n \leqslant v_n$$

- b) En déduire la monotonie des suites (u_n) et (v_n) .
- c) Démontrer que (u_n) et v_n) sont convergentes et ont même limite que l'on note M(a,b).
- **2.** a) Calculer M(0,1) et M(1,1).
 - b) Démontrer, pour tout $(x,y) \in (\mathbb{R}_+)^2$:

$$x \leqslant y \implies M(1,x) \leqslant M(1,y)$$

Exercice 27 (e est irrationnel)

Le but de cet exercice est de montrer que e est un nombre irrationnel.

1. On note (u_n) et (v_n) les suites définies par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \sum_{k=0}^n \frac{1}{k!} \quad \text{et} \quad v_n = u_n + \frac{1}{n \, n!}$$

- a) Déterminer le sens de monotonie de (u_n) et (v_n) .
- b) En déduire qu'elles convergent vers une limite commune. On la note ℓ .
- c) Supposons que ℓ est rationnel. Il existe alors $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que : $\ell = \frac{p}{q}$. Démontrer :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=0}^n \frac{1}{k!} < \frac{p}{q} < \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n \, n!}$$

- d) Conclure à une absurdité en choisissant n = q.
- 2. Le but de cette question est de démontrer : $\ell = e$.
 - a) Démontrer, pour tout $n \in \mathbb{N}$:

$$e = \sum_{k=0}^{n} \frac{1}{k!} + \int_{0}^{1} \frac{(1-t)^{n}}{n!} e^{t} dt$$

b) Démontrer :

$$\int_0^1 \frac{(1-t)^n}{n!} dt \underset{n \to +\infty}{\longrightarrow} 0$$

c) Conclure.

On considère les suites (u_n) et (v_n) définies par leur premier terme $(u_0, v_0) \in (\mathbb{R}_+^*)^2$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n + v_n}{2} \quad \text{et} \quad v_{n+1} = \frac{2 u_n v_n}{u_n + v_n}$$

- 1. Montrer que cette définition est licite puis : $\forall n \in \mathbb{N}^*, u_n \geqslant v_n$.
- 2. Montrer que (u_n) est décroissante à partir d'un certain rang et que (v_n) est croissante à partir d'un certain rang.
- 3. a) Démontrer, pour tout $n \in \mathbb{N}^*$:

$$u_{n+1} - v_{n+1} \leqslant \frac{u_n - v_n}{2}$$

- b) En déduire, à l'aide des questions précédentes, que les suites (u_n) et (v_n) sont adjacentes.
- 4. Pour tout $n \in \mathbb{N}$, calculer $u_n v_n$.
- 5. En déduire les limites de (u_n) et (v_n) .

CCINP MP

Exercice 29

Soit $x_0 \in \mathbb{R}$.

On définit la suite (u_n) par :

$$\begin{cases} u_0 = x_0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \arctan(u_n) \end{cases}$$

- 1. a) Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur de x_0 , le sens de variation de (u_n) .
 - b) Montrer que (u_n) converge et déterminer sa limite.
- 2. Déterminer l'ensemble des fonctions h, continues sur \mathbb{R} , telles que : $\forall x \in \mathbb{R}$, $h(x) = h(\arctan(x))$.

Calcul de limites

Exercice 30

Soit f une fonction définie sur \mathbb{R} et vérifiant :

$$f(x) \xrightarrow[x \to 0]{} 0$$
 et $\frac{f(2x) - f(x)}{x} \xrightarrow[x \to 0]{} 0$

- 1. Que vaut : $\sum_{k=1}^{n} \left(f\left(\frac{x}{2^{k-1}}\right) f\left(\frac{x}{2^k}\right) \right) + f\left(\frac{x}{2^n}\right) ?$
- 2. En déduire : $\frac{f(x)}{x} \xrightarrow[x \to 0]{} 0$.

Déterminer les limites suivantes.

$$a. \lim_{x \to +\infty} \frac{e^{2x}}{9x^3}$$

h.
$$\lim_{x \to +\infty} \frac{(x^3)^x}{(3^x)^3}$$

$$b. \lim_{x \to +\infty} \frac{e^{2x-1}}{(\ln x)^4}$$

i.
$$\lim_{x \to 0^+} \frac{(x^3)^x}{(3^x)^3}$$

c.
$$\lim_{x \to 3^+} \frac{2x^2 - 3x + 2}{x^2 - 9}$$

$$\mathbf{j.} \quad \lim_{x \to +\infty} \quad \ln(x+3) - \ln(x-1)$$

d.
$$\lim_{x \to 1} \quad \ln(x+3) - \ln(x-1)$$

$$k. \lim_{x \to +\infty} \ln(x^2 + 1) - 2\ln x$$

$$e. \lim_{x \to +\infty} \quad \sqrt{x+6} - \sqrt{x-2}$$

$$\lim_{x \to 0^+} \frac{x \ln x}{\sqrt{x} + 1}$$

$$f$$
. $\lim_{x \to 3^+} \frac{1}{x-3} - \frac{1}{x^2-9}$

$$m$$
. $\lim_{x \to +\infty} x^4 e^{-\sqrt{x}}$

$$g. \lim_{x \to 0^+} x^2$$

$$n. \lim_{x \to +\infty} \frac{e^{x^3}}{x}$$

Utilisation du taux d'accroissement

Exercice 32

Déterminer les limites suivantes.

a.
$$\lim_{x\to 0} (\ln(e+x))^{\frac{1}{x}}$$

b.
$$\lim_{x \to +\infty} (\ln(1 + e^{-x}))^{\frac{1}{x}}$$

Exercice 33

Déterminer les limites suivantes.

a.
$$\lim_{x \to 0^+} (1+x^3)^{1/x}$$

$$f. \lim_{x \to 0} \quad \frac{\ln(x^2 + 1)}{x}$$

$$b. \lim_{x \to 0^+} \frac{\ln(1-5x)}{x}$$

$$g. \lim_{x \to 0} \quad \frac{\ln(x+1)}{x^2}$$

c.
$$\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x}\right)$$

h.
$$\lim_{x \to 0} (1+x)^{\ln x}$$

$$d. \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$$

$$i. \lim_{x \to 0^+} \quad \frac{2\sqrt{x}}{\ln(1+x)}$$

e.
$$\lim_{x\to 0^+} (1+x)^{\frac{1}{x}}$$

$$j$$
. $\lim_{x \to +\infty} x \ln \left(\frac{x+5}{x+3} \right)$

Limite à droite, limite à gauche

Exercice 34

Soit $a \in \mathbb{R}$.

- a. La fonction $x \mapsto |x|$ est-elle continue en a?
- **b.** La fonction $x \mapsto \lfloor x \rfloor + (x \lfloor x \rfloor)^2$ est-elle continue en a?

Exercice 35

Étudier la continuité au point x_0 des fonctions suivantes.

a.
$$x_0 = 2$$
 et $f(x) = \begin{cases} x+1 & \text{si } x < 2 \\ x^2 - 1 & \text{si } x \geqslant 2 \end{cases}$

b.
$$x_0 = -\frac{1}{2}$$
 et $f(x) = \begin{cases} \frac{4x^2 + 5x - 4}{2x + 1} & \text{si } x \neq -\frac{1}{2} \\ 0 & \text{si } x = -\frac{1}{2} \end{cases}$

c.
$$x_0 = 0$$
 et $g(x) = \begin{cases} \frac{x^2}{x - e^{1/x}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

d.
$$x_0 = 0$$
 et $h(x) = \begin{cases} x \ln\left(\frac{x^2 + 1}{x}\right) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$

e.
$$x_0 = 1$$
 et $j(x) = \begin{cases} \ln(\sqrt{x} - 1) - \ln(x - 1) & \text{si } x > 1 \\ 0 & \text{si } x = 1 \end{cases}$

f.
$$x_0 = 0$$
 et $k(x) = \frac{x^2 + 2|x|}{x}$

Limites infinies, définitions équivalentes

Exercice 36

Soient $f: I \to \mathbb{R}$ et $x_0 \in \overline{I}$.

Démontrer que les propositions suivantes sont équivalentes.

- a. f admet la limite $+\infty$ en x_0 .
- b. $\forall B > 0, \ \exists \alpha > 0, \ \forall x \in I, \ (|x x_0| \leqslant \alpha \Rightarrow f(x) \geqslant B)$
- c. $\forall B \in \mathbb{R}, \exists \alpha > 0, \forall x \in I, (|x x_0| \leq \alpha \Rightarrow f(x) \geq B)$

Exercice 37

Soient $f: I \to \mathbb{R}$ et $x_0 \in \overline{I}$.

Démontrer que les propositions suivantes sont équivalentes.

- a. f admet la limite $-\infty$ en x_0 .
- **b.** $\forall B > 0, \ \exists \alpha > 0, \ \forall x \in I, \ (|x x_0| \leqslant \alpha \Rightarrow f(x) \leqslant -B)$
- c. $\forall B \in \mathbb{R}, \exists \alpha > 0, \forall x \in I, (|x x_0| \leq \alpha \Rightarrow f(x) \leq B)$

Soit $f: I \to \mathbb{R}$.

Démontrer que les propositions suivantes sont équivalentes.

- a. f admet la limite $-\infty$ en $+\infty$.
- **b.** $\forall B > 0, \ \exists A > 0, \ \forall x \in I, \ (x \geqslant A \Rightarrow f(x) \leqslant -B)$
- c. $\forall B \in \mathbb{R}, \exists A \in \mathbb{R}, \forall x \in I, (x \geqslant A \Rightarrow f(x) \leqslant B)$

Démonstration « avec les ε »

Exercice 39

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ et $x_0 \in \overline{I}$.

a. Montrer que :

Quel énoncé peut-on écrire quand $x \to x_0^+$?

b. Montrer que :

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to +\infty}}} f(x) = \ell_1 \\ \lim_{x \to +\infty} g(x) = \ell_2$$
 $\rightarrow \lim_{x \to +\infty} (f+g)(x) = \ell_1 + \ell_2$

c. Montrer que :

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = \ell_1 \\ \lim_{x \to x_0} g(x) = \ell_2 \\ \right\} \to \lim_{x \to x_0} (f \times g)(x) = \ell_1 \ell_2$$

On pourra remarquer que:

$$f(x)g(x) - \ell_1\ell_2 = f(x)(g(x) - \ell_2) + \ell_2(f(x) - \ell_1).$$

Exercice 40

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ et $x_0 \in \overline{I}$.

Montrer que :

$$\left. \begin{array}{l} f \text{ born\'ee} \\ \lim_{x \to x_0} g(x) = 0 \end{array} \right\} \Rightarrow \lim_{x \to x_0} (f \times g)(x) = 0$$

Exercice 41

Soit f une fonction continue de \mathbb{R} dans \mathbb{Z} . Montrer que f est constante.

Exercice 42

Montrer qu'une fonction réelle définie et périodique sur \mathbb{R} , admettant une limite en $+\infty$ est constante.

Exercice 43

Montrer qu'une fonction réelle f, définie sur \mathbb{R} , admettant une limite en 0 et vérifiant pour tout $x \in \mathbb{R}$: f(2x) = f(x) est constante.