Programme de colle - Semaine 27

Notation

On adoptera les principes suivants pour noter les étudiants :

- \times si l'étudiant sait répondre à la question de cours, il aura une note > 8.
- × si l'étudiant ne sait pas répondre à la question de cours ou s'il y a trop d'hésitations, il aura une note ≤ 8.

Questions de cours

• Conservation de la structure d'ev par une application linéaire

Soient E et F deux \mathbb{K} -espaces vectoriels. Soit $f \in \mathcal{L}(E, F)$.

- 1) H est un sev de $E \Rightarrow f(H)$ est un sev de F
- 2) G est un sev de $F \Rightarrow f^{-1}(G)$ est un sev de E

Démonstration.

- 1) Supposons que H est un sous-espace vectoriel de E.
 - Tout d'abord, par définition de $f(H): f(H) \subset F$.
 - Ensuite : $f(H) \neq \emptyset$ car $0_F \in f(H)$. En effet :
 - \times comme H est un sous-espace vectoriel de E, alors : $0_E \in H$.
 - \times comme f est linéaire : $0_F = f(0_E)$.

Ainsi, il existe $x \in H$ tel que : $0_F = f(x)$.

- Démontrons que f(H) est stable par combinaison linéaire.

Soit
$$(\lambda_1, \lambda_2) \in \mathbb{K}^2$$
. Soit $(y_1, y_2) \in (f(H))^2$.

- × Comme $y_1 \in f(H)$, alors il existe $x_1 \in H$ tel que : $y_1 = f(x_1)$.
- × Comme $y_2 \in f(H)$, alors il existe $x_2 \in H$ tel que : $y_2 = f(x_2)$.

On en déduit :

$$\lambda_1 \cdot y_1 + \lambda_2 \cdot y_2 = \lambda_1 \cdot f(x_1) + \lambda_2 \cdot f(x_2)$$
$$= f(\lambda_1 \cdot x_1 + \lambda_2 \cdot x_2) \qquad (car \ f \ est \ linéaire)$$

Or, comme $(x_1, x_2) \in H^2$ et H est un espace vectoriel, alors : $\lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 \in H$. On a bien démontré qu'il existe $u \in H$ tel que : $\lambda_1 \cdot y_1 + \lambda_2 \cdot y_2 = f(u)$. On en déduit : $\lambda_1 \cdot y_1 + \lambda_2 \cdot y_2 \in f(H)$.

- 2) Supposons que G est un sous-espace vectoriel de F.
 - Tout d'abord, par définition de $f^{-1}(G): f^{-1}(G) \subset E$.
 - Ensuite : $f^{-1}(G) \neq \emptyset$ car $0_E \in f^{-1}(G)$. En effet :
 - \times comme f est linéaire : $f(0_E) = 0_F$.
 - \times de plus, comme G est un sous-espace vectoriel de F, alors : $0_F \in G$.

Ainsi : $f(0_E) \in G$. D'où : $0_E \in f^{-1}(G)$.

• Démontrons que $f^{-1}(G)$ est stable par combinaison linéaire.

Soit $(\lambda_1, \lambda_2) \in \mathbb{K}^2$. Soit $(x_1, x_2) \in (f^{-1}(G))^2$.

- × Comme $x_1 \in f^{-1}(G)$, alors : $f(x_1) \in G$.
- × Comme $x_2 \in f^{-1}(G)$, alors : $f(x_2) \in G$.

On en déduit, puisque f est linéaire :

$$f(\lambda_1 \cdot x_1 + \lambda_2 \cdot x_2) = \lambda_1 \cdot f(x_1) + \lambda_2 \cdot f(x_2)$$

Or, comme $(f(x_1), f(x_2)) \in G^2$ et G est un espace vectoriel, alors : $\lambda_1 \cdot f(x_1) + \lambda_2 \cdot f(x_2) \in G$.

On a bien démontré : $f(\lambda_1 \cdot x_1 + \lambda_2 \cdot x_2) \in G$.

On en déduit : $\lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 \in f^{-1}(G)$.

• Caractérisation de l'injectivité à l'aide du noyau

Soient E et F des \mathbb{K} -espaces vectoriels.

Soit $f \in \mathcal{L}(E, F)$.

L'application
$$f$$
 injective $\Leftrightarrow \operatorname{Ker}(f) = \{0_E\}$

 $D\'{e}monstration.$

- (⇒) Supposons f injective. Démontrons que : $Ker(f) = \{0_E\}$.
 - (\supset) Comme f linéaire, $f(0_E) = 0_F$. Ce qui démontre que : $Ker(f) \supset \{0_E\}$.
 - (\subset) Soit $x \in \text{Ker}(f)$. Ainsi:

$$f(x) = 0_F = f(0_E)$$

L'application f étant injective, $x = 0_E$.

Ce qui démontre : $x \in \{0_E\}$.

 (\Leftarrow) Supposons que $Ker(f) = \{0_E\}$. Démontrons que f est injective.

Soit $(x, y) \in E^2$. Supposons : f(x) = f(y).

On a alors : $f(x) - f(y) = 0_F$, ce qui s'écrit :

$$f(x-y) = 0_F$$

2

Ainsi, $x - y \in \text{Ker}(f) = \{0_E\}$, d'où $x - y = 0_E$ et x = y.

• Caractérisation de l'image en dimension finie

Soient E et F des \mathbb{K} -espaces vectoriels.

On suppose E de dimension finie $p \in \mathbb{N}^*$ et on note $\mathscr{B} = (e_1, \dots, e_p)$ une base de E. Soit $f \in \mathscr{L}(E, F)$.

$$\operatorname{Im}(f) = \operatorname{Vect}(f(e_1), \dots, f(e_p))$$

 $D\'{e}monstration.$

Démonstration du point 2).

 (\subset) Soit $y \in \text{Im}(f)$.

Alors il existe $x \in E$ tel que y = f(x). Le vecteur x se décompose de manière unique sur \mathscr{B} . Autrement dit, il existe un unique p-uplet (x_1, \ldots, x_p) tel que :

$$x = x_1 \cdot e_1 + \dots + x_p \cdot e_p$$

Ainsi, par linéarité de f:

$$y = f(x) = x_1 \cdot f(e_1) + \dots + x_p \cdot f(e_p)$$

Ainsi, $y \in \text{Vect}(f(e_1), \dots, f(e_n))$.

 (\supset) Soit $y \in \text{Vect}(f(e_1), \ldots, f(e_p))$. Il existe alors $(\lambda_1, \ldots, \lambda_p) \in \mathbb{K}^p$ tel que :

$$y = \lambda_1 \cdot f(e_1) + \ldots + \lambda_p \cdot f(e_p) = f(\lambda_1 \cdot e_1 + \ldots + \lambda_p \cdot e_p)$$

Ainsi, $y \in \text{Im}(f)$.

• Réciproque d'un isomorphisme

Soient E et F des \mathbb{K} -espaces vectoriels.

Soit $u \in \mathcal{L}(E, F)$.

Supposons que u est un isomorphisme de E dans F.

Alors l'application réciproque u^{-1} est un isomorphisme de F dans E. (en particulier, $u^{-1} \in \mathcal{L}(F, E)$)

 $D\'{e}monstration.$

- L'application $u^{-1}: F \to E$ est bijective en tant que réciproque de l'application $u: E \to F$ qui est elle-même bijective.
- Il reste à démontre que $u^{-1}: F \to E$ est linéaire.

Soit $(\lambda_1, \lambda_2) \in \mathbb{K}^2$ et soit $(y_1, y_2) \in F^2$.

L'application u étant surjective :

 \times il existe $x_1 \in E$ tel que : $y_1 = u(x_1)$.

Ce qu'on peut aussi écrire : $x_1 = u^{-1}(y_1)$.

 \times il existe $x_2 \in E$ tel que : $y_2 = u(x_2)$.

Ce qu'on peut aussi écrire : $x_2 = u^{-1}(y_2)$.

On en déduit que :

$$u^{-1}(\lambda_{1} \cdot y_{1} + \lambda_{2} \cdot y_{2}) = u^{-1} \Big(\lambda_{1} \cdot u(x_{1}) + \lambda_{2} \cdot u(x_{2}) \Big)$$

$$= u^{-1} \Big(u(\lambda_{1} \cdot x_{1} + \lambda_{2} \cdot x_{2}) \Big)$$

$$= \lambda_{1} \cdot x_{1} + \lambda_{2} \cdot x_{2}$$

$$= \lambda_{1} \cdot u^{-1}(y_{1}) + \lambda_{2} \cdot u^{-1}(y_{2})$$

Ainsi, $u^{-1} \in \mathcal{L}(F, E)$.

Connaissances exigibles

Application linéaires

- Applications linéaires :
 - × définition,
 - × premières propriétés,
 - × conservation de la structure d'espace vectoriel,
- Structure de l'ensemble des applications linéaires :
 - × structure d'espace vectoriel,
 - \times composition d'applications linéaires : linéarité, puissance $k^{\text{ème}}$ d'un endomorphisme,
- Isomorphismes et automorphismes :
 - × définition,
 - × linéarité de l'application réciproque,
 - × réciproque de la composée d'isomorphismes,
- Noyau d'une application linéaire :
 - × définition,
 - × structure d'espace vectoriel,
 - × caractérisation de l'injectivité,
- Image d'une application linéaire :
 - × définition,
 - × structure d'espace vectoriel,
 - × caractérisation de la surjectivité,
- Cas particulier de la dimension finie :
 - × caractérisation de l'image en dimension finie,
 - × caractérisation de l'injectivité / surjectivité / bijectivité par l'image d'une famille libre / génératrice / base,
 - × rang d'une application linéaire,
 - × théorème du rang,
 - × rang d'une composée,
 - × caractérisation de l'injectivité / surjectivité / bijectivité par le rang,
 - × détermination d'une application linéaire en dimension finie,
- Formes linéaires :
 - \times définition,
 - x caractérisation des hyperplans en dimension finie,
 - × équations d'un hyperplan dans une base.

On sanctionnera fortement les points suivants :

- × toute confusion d'objets,
- × toute confusion variable libre / liée (ou muette),
- x tout oubli d'introduction de variable (cela rejoint le point précédent),
- × toute erreur de logique (absence ou erreur de connecteur logique par exemple),
- × tout manque de réflexe dans l'utilisation des structures de démonstration.