Thème 1 : Suites numériques

I. Séance 1 : définitions

Exercice 1

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels et soit $\ell\in\mathbb{R}$.

- 1. Qu'est-ce qu'une suite monotone?
- 2. Traduire en mathématiques (avec les quantificateurs) les propositions mathématiques suivantes.
 - a) La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - b) La suite $(u_n)_{n\in\mathbb{N}}$ est majorée.
 - c) La suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .
 - d) La suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.
- 3. Reprendre les questions 2.a) et 2.b) dans le cas où les propriétés précédentes sont vérifiées seulement à partir d'un certain rang.
- 4. Écrire la négation des propositions de la question 2.

Exercice 2. (**) Vrai ou Faux?

- 1. Si la suite (u_n) diverge vers $+\infty$, alors elle n'est pas majorée.
- 2. Une suite (u_n) croissante à partir d'un certain rang est minorée.
- 3. Si $(|u_n|)$ converge alors (u_n) converge.
- 4. Si $(|u_n|)$ tend vers 0 alors (u_n) tend vers 0.
- 5. Une suite convergente est monotone à partir d'un certain rang.
- 6. Une suite convergente et majorée est croissante.
- 7. Une suite divergeant vers $+\infty$ est croissante à partir d'un certain rang.
- 8. Une suite strictement croissante diverge vers $+\infty$.
- 9. Une suite strictement décroissante diverge vers $-\infty$.
- 10. Si (u_n) est croissante et pour tout $n \in \mathbb{N}$: $u_n \leq v_n$ alors (v_n) est croissante.
- 11. Si (u_n) tend vers 0 et (v_n) tend vers $+\infty$, alors on ne peut conclure sur la limite du quotient $\frac{u_n}{v_n}$.
- 12. Si (u_n) est divergente, alors la suite définie par : $\forall n \in \mathbb{N}, v_n = u_{n+1} u_n$ est divergente.
- 13. Si (u_n) tend vers $\ell \neq 0$ alors : $\lim_{n \to +\infty} u_{n+1} u_n = 0$ et $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$.

Séance 2 : manipulations de base (et Python)

Exercice 3

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{1 + u_n^2} \end{cases}$$

- 1. Montrer que : $\forall n \in \mathbb{N}, \ u_n > 0$.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est monotone.
- 3. Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$.
- 4. a) Écrire en Python la fonction calculSuite qui prend en paramètre un entier n et renvoie le $n^{\text{ème}}$ terme de la suite $(u_n)_{n\in\mathbb{N}}$.
 - b) Quel appel permet de calculer u_8 ?
- 5. a) Écrire en Python la fonction calculPremiersTermes qui prend en paramètre un entier n et renvoie la liste L contenant les n premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$.
 - b) On considère alors le programme \mathbf{Python} suivant :

```
import numpy as np
import matplotlib.pyplot as plt

n = 100
absc = np.linspace(0, n-1, n)
t = calculPremiersTermes(n)
plt.plot(absc, t)
plt.show()
```

Que réalise ce programme?

- **6.** a) Justifier qu'il existe un rang $n_0 \in \mathbb{N}$ tel que : $\forall n \ge n_0, |u_n| \le 10^{-4}$.
 - b) Écrire en Python un programme qui permet de déterminer le premier entier n tel que $|u_n| \le 10^{-4}$.

Séance 3 : suites récurrentes linéaires usuelles

Exercice 4

On considère une suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_0>0,\,u_1>0$, et vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+2} = u_n^3 \times u_{n+1}^2$$

- 1. Montrer par une récurrence double que $u_n > 0$ pour tout entier naturel n.
- 2. On note $t_n = \ln(u_n)$.
 - a) Montrer que la suite (t_n) vérifie $\forall n \in \mathbb{N}, t_{n+2} = 3t_n + 2t_{n+1}$.
 - b) De quel type de suite s'agit-il?
- 3. Déterminer, en fonction de u_0 et u_1 , le terme général de la suite (t_n) .
- 4. En déduire que :

$$\forall n \in \mathbb{N}, \ u_n = \exp\left(\frac{3^n}{4}\ln(u_0u_1) + \frac{(-1)^n}{4}\ln\left(\frac{u_0^3}{u_1}\right)\right)$$

Exercice 5

On considère la suite (u_n) définie dans l'Exercice 4.

- 1. Écrire en Python la fonction calculPremiersTermes qui prend en paramètre un entier n, des valeurs u0, u1 et renvoie la liste L contenant les n premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$.
- 2. Écrire un programme permettant de tracer les 100 premiers termes de la suite (u_n) pour les valeurs $u_0 = 0, 7$ et $u_1 = 1, 2$.

Exercice 6

On appelle $(u_n)_{n\geqslant 0}$ la suite définie par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{2} \ u_n + 1 \end{cases}$$

- 1. Démontrer par récurrence : $\forall n \in \mathbb{N}, u_n \geqslant n$.
- 2. En déduire la limite de (u_n) quand n tend vers $+\infty$.
- 3. Déterminer la formule explicite de u_n .

Séance 4 : suites récurrentes et inégalités des accroissements finis

Exercice 7

Soit f la fonction définie sur \mathbb{R} par $f: x \mapsto \frac{e^x}{e^{2x} + 1}$.

- 1. a) Démontrer que f est paire sur \mathbb{R} .
 - b) Justifier que f est \mathcal{C}^1 sur \mathbb{R} et étudier ses variations.
 - c) Montrer que l'équation f(x) = x admet une unique solution $\ell \in \mathbb{R}^+$.
 - d) Justifier que : $0 \le \ell \le \frac{1}{2}$.

Données numériques : $e^{1/2} \simeq 1,65$ et $e \simeq 2,72$ au centième près.

- e) Montrer que : $\forall x \ge 0, |f'(x)| \le f(x)$. En déduire que : $\forall x \ge 0, |f'(x)| \le \frac{1}{2}$.
- f) Vérifier que $f(\left[0,\frac{1}{2}\right]) \subset \left[0,\frac{1}{2}\right]$.
- 2. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$

- a) Montrer que, pour tout $n \in \mathbb{N}, u_n \in [0, \frac{1}{2}].$
- b) Montrer que, pour tout $n \in \mathbb{N}$:

$$|u_{n+1} - \ell| \le \frac{1}{2} |u_n - \ell|$$
 puis que $|u_n - \ell| \le \frac{1}{2^{n+1}}$

c) En déduire que la suite (u_n) converge vers ℓ .

3. Informatique

- a) Écrire une fonction Python f qui prend en entrée un réel x et qui calcule f(x).
- b) En utilisant la fonction f précédente, écrire une fonction SuiteU qui prend en entrée un entier positif n et qui calcule u_n .
- c) En utilisant la fonction SuiteU précédente, comment peut-on obtenir à l'aide de Python une valeur approchée de ℓ à 10^{-4} près?

Exercice 8

Dans tout cet exercice, f désigne la fonction définie sur $]0, +\infty[$ par :

$$\forall x \in]0, +\infty[, f(x) = x - \ln(x)]$$

Partie I : Étude de la fonction f

- 1. Dresser le tableau de variations de f en précisant ses limites en 0 et en $+\infty$.
- 2. Montrer que l'équation f(x) = 2, d'inconnue $x \in]0, +\infty[$, admet exactement deux solutions, que l'on note a et b, telles que 0 < a < 1 < b.
- 3. Montrer: $b \in [2, 4]$. On donne: $\ln(2) \simeq 0, 7$.

Partie II: Étude d'une suite

On pose : $u_0 = 4$ et $\forall n \in \mathbb{N}, u_{n+1} = \ln(u_n) + 2$.

- 4. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que l'on a : $\forall n\in\mathbb{N}, u_n\in[b,+\infty[$.
- 5. Déterminer la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$. En déduire qu'elle converge et préciser sa limite.
- 6. a) Montrer: $\forall n \in \mathbb{N}, u_{n+1} b \leqslant \frac{1}{2} (u_n b).$
 - b) En déduire : $\forall n \in \mathbb{N}, 0 \leqslant u_n b \leqslant \frac{1}{2^{n-1}}$.
- 7. a) Écrire une fonction **Python** d'en-tête def suite(n) : qui, prenant en argument un entier n de \mathbb{N} , renvoie la valeur de u_n .
 - b) Recopier et compléter la ligne <u>3</u> de la fonction **Python** suivante afin que, prenant en argument un réel **epsilon** strictement positif, elle renvoie une valeur approchée de b à **epsilon** près.

Séance 5 : suites implicites

Exercice 9

Pour tout entier n positif, on définit sur $[0, +\infty[$ la fonction f_n par :

$$\forall x \in [0, +\infty[, f_n(x)] = e^x + nx^2 - 3$$

- 1. a) Montrer que f_n est continue et dérivable sur son ensemble de définition. Dresser son tableau de variations.
 - b) Donner l'équation de la tangente de f_n en 1.
 - c) Tracer dans un même repère les courbes de f_0 , f_1 et f_2 .
 - d) Montrer que l'équation $f_n(x) = 0$ a exactement une solution positive, notée u_n .
 - e) Préciser la valeur de u_0 . Dans la suite on supposera que $n \ge 1$.
 - f) Vérifier que : $\forall n \in \mathbb{N}^*, u_n \in]0,1[$.
- 2. Écrire une fonction **Python** qui prend un entier n et qui calcule une valeur approchée de u_n à 0,001 près par la méthode de dichotomie.
- 3. a) Montrer que : $\forall x \in]0,1[, f_{n+1}(x) > f_n(x).$
 - b) En déduire le signe de $f_n(u_{n+1})$, puis le sens de variation de la suite (u_n) .
 - c) Montrer que (u_n) est convergente. On note ℓ sa limite.
 - d) On suppose dans cette question que $\ell > 0$. Calculer la limite de $e^{u_n} + n u_n^2 - 3$ et en déduire une contradiction.
 - e) Donner enfin la valeur de ℓ .
 - f) Montrer que $\sqrt{\frac{n}{2}} u_n$ tend vers 1 quand n tend vers $+\infty$.

Exercice 10

Pour tout entier n non nul, on note h_n la fonction définie sur \mathbb{R}_+^* par :

$$\forall x > 0, \ h_n(x) = f(x^n, 1) = x^n + 1 + \frac{1}{x^n}$$

- 1. Démontrer que pour tout entier naturel n non nul, la fonction h_n est strictement décroissante sur [0,1[et strictement croissante sur $[1,+\infty[$.
- 2. En déduire que pour tout entier n non nul, l'équation $h_n(x) = 4$ admet exactement deux solutions, notées u_n et v_n et vérifiant : $0 < u_n < 1 < v_n$.
- 3. a) Démontrer :

$$\forall x > 0, \ \forall n \in \mathbb{N}^*, \ h_{n+1}(x) - h_n(x) = \frac{(x-1)(x^{2n+1}-1)}{x^{n+1}}$$

- b) En déduire : $\forall n \in \mathbb{N}^*, h_{n+1}(v_n) \geq 4.$
- c) Montrer alors que la suite (v_n) est décroissante.
- 4. a) Démontrer que la suite (v_n) converge vers un réel ℓ et montrer : $\ell \geqslant 1$.
 - b) En supposant que $\ell > 1$, démontrer : $\lim_{n \to +\infty} v_n^n = +\infty$. En déduire une contradiction.

c) Déterminer la limite de (v_n) .

- 5. a) Montrer: $\forall n \geq 1, \ v_n \leq 3$.
 - b) Écrire une fonction Python d'en-tête def h(n,x) qui renvoie la valeur de $h_n(x)$ lorsqu'on lui fournit un entier naturel n non nul et un réel $x \in \mathbb{R}_+^*$ en entrée.
 - c) Compléter la fonction suivante pour qu'elle renvoie une valeur approchée à 10^{-5} près de v_n par la méthode de dichotomie lorsqu'on lui fournit un entier $n \ge 1$ en entrée :

```
def v(n):
    a = 1
    b = 3
    while (b-a) > 10**(-5):
    c = (a + b)/2
    if h(n,c) < 4:
    .....
    else:
        return .....
</pre>
```