DS1

On traitera OBLIGATOIREMENT les questions portant un astérisque. Elles sont au nombre de 10. Dans le cas contraire, la note finale se verra divisée par 2.

Exercice 1

On considère l'application $\varphi:]0, +\infty[\to \mathbb{R}, x \mapsto e^x - xe^{\frac{1}{x}}]$. On admet 2 < e < 3.

Partie I : Étude de la fonction φ

- 1. (*) Démontrer que φ est dérivable sur $]0, +\infty[$.
- 2. On admet que φ est de classe \mathcal{C}^3 sur $]0, +\infty[$. Calculer, pour tout x de $]0, +\infty[$, $\varphi'(x)$ et $\varphi''(x)$ et montrer : $\forall x \in]0, +\infty[$, $\varphi'''(x) = e^x + \frac{3x+1}{x^5} e^{\frac{1}{x}}$.
- 3. (*) Étudier le sens de variation de φ'' et calculer $\varphi''(1)$. En déduire le sens de variation de φ' , et montrer : $\forall x \in [0, +\infty[, \varphi'(x) \ge e]$.
- 4. (*) Déterminer la limite de $\varphi(x)$ lorsque x tend vers 0 par valeurs strictement positives.
- 5. Déterminer la limite de $\frac{\varphi(x)}{x}$ lorsque x tend vers $+\infty$, et la limite de $\varphi(x)$ lorsque x tend vers $+\infty$.
- 6. On admet : $15 < \varphi(3) < 16$. Montrer : $\forall x \in [3, +\infty[, \varphi(x) \ge e x]$. On note \mathcal{C} la courbe représentative de φ .
- 7. Montrer que \mathcal{C} admet un unique point d'inflexion, déterminer les coordonnées de celui-ci et l'équation de la tangente en ce point.
- 8. Dresser le tableau de variations de φ , avec les limites en 0 et en $+\infty$, et la valeur en 1. Tracer l'allure de \mathcal{C} et faire apparaître la tangente au point d'inflexion.

Partie II: Étude d'une suite

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et : $\forall n\in\mathbb{N}, u_{n+1}=\varphi(u_n)$.

- 9. (*) Montrer que, pour tout n de \mathbb{N} , u_n existe et $u_n \geqslant 3 e^n$. (on pourra utiliser les résultats de la **Partie I**)
- 10. Montrer que la suite (u_n) est strictement croissante et que u_n tend vers $+\infty$ lorsque n tend vers l'infini.
- 11. (*) Écrire un programme Python qui affiche et calcule le plus petit entier n tel que $u_n \ge 10^3$.

Exercice 2

Écrire de manière mathématique les propositions suivantes ainsi que leur négation. On évaluera ensuite la véracité de ces propositions.

- 12. (*) Tout nombre réel positif est inférieur ou égal à son carré.
- 13. Tout réel positif de racine carrée supérieure ou égale à 2, est lui-même supérieur ou égal à 4.
- 14. Le trinôme $z^2 3z + 2$ admet une racine réelle.
- 15. La suite $(2n-\sqrt{5})_{n\in\mathbb{N}}$ est une suite arithmétique.

Exercice 3

Dans les paires suivantes, les propositions (à paramètre) sont-elles équivalentes pour toute valeur des paramètres? Si ce n'est pas le cas, donner les implications valables. Toute réponse devra être justifiée.

- 16. Paramètre : $x \in \mathbb{R}$. Propositions : $(x^3 \le 3)$ et $(|x| \le 3^{\frac{1}{3}})$.
- 17. Paramètre : $x \in \mathbb{R}_+^*$. Propositions : (x < 1) et $(x^2 < x)$.
- 18. Paramètres : $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in \mathbb{R}^n$. Propositions : $(x_1^2 + \dots + x_n^2 = 0)$ et $(\forall i \in [1, n], x_i = 0)$
- 19. Paramètre : $(x, y) \in \mathbb{R}^2$. Propositions : $(x^2 + y^2 > 1)$ et (|x| > 1 OU |y| > 1).

Exercice 4

Pour chacune des propositions $P(\cdot)$ ci-dessous, déterminer si la proposition $Q(\cdot)$ est nécessaire, suffisante, les deux à la fois ou rien du tout (réponse à justifier).

- **20.** (*) Paramètre : $(x,y) \in \mathbb{Z}^2$. Propositions : $P(x,y) : (x^2 - y^2 = 0)$ et Q(x,y) : (x = y).
- 21. Paramètre : $x \in \mathbb{R}$. Propositions : $P(x) : (x \ge 0)$ et $Q(x) : (x \ge 1)$.
- **22.** Paramètre : $(a, b, c) \in \mathbb{R}^3$. Propositions : P(a, b, c) : (|a + b + c| = 0) et Q(a, b, c) : (a = b = c = 0).
- 23. Paramètres : $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $a\in\mathbb{R}$. Propositions : $P\big((u_n)_{n\in\mathbb{N}},a\big)$: (la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison a) et $Q\big((u_n)_{n\in\mathbb{N}},a\big)$: $(\forall n\in\mathbb{N},\,u_{n+2}-u_{n+1}=u_{n+1}-u_n)$.

Exercice 5

Résoudre les équations et inéquations suivantes, d'inconnue $x \in \mathbb{R}$.

24. (*)
$$5^{3x+4} - 2^{2x-3} = 0$$

26.
$$\sqrt{-x^2+x+3} \leqslant 2x+1$$

25.
$$|x+1|+|2x+1|=0$$

27. (*)
$$|3-2x| \geqslant \sqrt{-2x^2+x+1}$$

Exercice 6

Soit $n \in \mathbb{N}$. On considère les sommes :

$$S_n = \sum_{k=0}^n k$$
 et $T_n = \sum_{0 \le i < j \le n} \frac{i}{j}$

- 28. (*) Rappeler l'expression de S_n en fonction de n et la démontrer.
- **29.** En déduire une expression de T_n en fonction de n.

Exercice 7

- 30. Montrer que la suite $(n!)_{n\in\mathbb{N}}$ est strictement croissante.
- 31. Montrer que, pour tout $n \in [2, +\infty]$, n! est un nombre pair.

On admettra par la suite que pour tout $n \in [3, +\infty]$, n! est un multiple de 3.

- 32. Soit $(a,b) \in \mathbb{N}^2$ tel que : $a \leq b$.
 - a) Exprimer le quotient $\frac{b!}{a!}$ comme produit explicite d'entiers naturels.
 - b) Que peut-on en déduire sur le réel $\frac{b!}{a!}$?
- 33. Démontrer qu'il n'existe pas de couple d'entiers $(b,c) \in \mathbb{N}^2$ tel que : b! = c! + 2.