DS7

On traitera OBLIGATOIREMENT l'exercice de cours. Dans le cas contraire, la note finale se verra divisée par 2.

Exercice: Cours

Soit $n \in \mathbb{N}^*$. On dispose d'une urne contenant n jetons numérotés de 1 à n et d'une pièce équilibrée. On commence par piocher un jeton au hasard dans l'urne. Si le jeton obtenu est le jeton numéro k, alors on lance k fois la pièce.

Pour tout $(i, k) \in [1, n]^2$, on note:

 J_k : « obtenir le jeton numéro k »

 A_i : « obtenir exactement i Pile au cours de l'expérience »

- 1. Soit $(i,k) \in [1,n]^2$.
 - a) Supposons : $i \leqslant k$. Démontrer : $\mathbb{P}(A_i \mid J_k) = \binom{k}{i} \frac{1}{2^k}$.
 - b) Que vaut $\mathbb{P}(A_i \mid J_k)$ dans le cas où i > k? Justifier.
- 2. Démontrer alors : $\mathbb{P}(A_i) = \frac{1}{n} \sum_{k=i}^{n} \binom{k}{i} \frac{1}{2^k}$.

Problème I

Dans tout ce sujet, I est un intervalle de \mathbb{R} d'intérieur non vide et w est une fonction continue et strictement positive de I dans \mathbb{R} ; on dit que w est un poids sur I.

Étant donnée une fonction continue $f: I \to \mathbb{R}$ telle que l'intégrale de fw sur I est bien définie, on cherche à approcher l'intégrale $\int_I f(x) w(x) dx$ par une expression de la forme :

$$I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$$

où $n \in \mathbb{N}$, $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ et $x_0 < x_1 < \dots < x_n$ sont n+1 points distincts dans I. Une telle expression $I_n(f)$ est appelée formule de quadrature et on note :

$$e(f) = \int_{I} f(x) w(x) dx - \sum_{j=0}^{n} \lambda_{j} f(x_{j})$$

l'erreur de quadrature associée. On remarque que e est une forme linéaire sur l'espace vectoriel des fonctions f de I dans \mathbb{R} telles que l'intégrale de fw sur I est bien définie.

On rappelle qu'un polynôme est dit *unitaire* si son coefficient dominant est 1.

Étant donné un entier $m \in \mathbb{N}$, on note $\mathbb{R}_m[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à m. On dit qu'une formule de quadrature $I_n(f)$ est exacte sur $\mathbb{R}_m[X]$ si :

$$\forall P \in \mathbb{R}_m[X], \ e(P) = 0$$

ce qui signifie que, pour tout polynôme P de degré inférieur ou égal à m :

$$\int_{I} P(x) w(x) dx = \sum_{j=0}^{n} \lambda_{j} P(x_{j})$$

Enfin, on appelle ordre d'une formule de quadrature $I_n(f)$ le plus grand entier $m \in \mathbb{N}$ pour lequel la formule de quadrature $I_n(f)$ est exacte sur $\mathbb{R}_m[X]$.

A - Exemples élémentaires

Dans cette sous-partie, on se place dans le cas I = [0,1] et : $\forall x \in I, w(x) = 1$. On cherche donc à approcher $\int_0^1 f(x) dx$ lorsque f est une fonction continue de [0,1] dans \mathbb{R} .

- 3. Déterminer l'ordre de la formule de quadrature $I_0(f) = f(0)$ et représenter graphiquement l'erreur associée à e(f).
- 4. Faire de même avec la formule de quadrature $I_0(f) = f\left(\frac{1}{2}\right)$.
- 5. Déterminer les coefficients λ_0 , λ_1 , λ_2 pour que la formule $I_2(f) = \lambda_0 f(0) + \lambda_1 f\left(\frac{1}{2}\right) + \lambda_2 f(1)$ soit exacte sur $\mathbb{R}_2[X]$. Cette formule de quadrature est-elle d'ordre 2?

B - Construction de formules d'ordre quelconque

On revient au cas général.

Soit $n \in \mathbb{N}$. On considère n+1 points distincts dans I, notés $x_0 < x_1 < \cdots < x_n$, et une fonction continue f de I dans \mathbb{R} .

- 6. Montrer que l'application linéaire $\varphi: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$ est un isomorphisme. $P \mapsto (P(x_0), P(x_1), \dots, P(x_n))$
- 7. Montrer que, pour tout $i \in [0, n]$, il existe un unique polynôme $L_i \in \mathbb{R}_n[X]$ tel que :

$$\forall j \in [0, n], \quad L_i(x_j) = \begin{cases} 0 & \text{si } j \neq i \\ 1 & \text{si } j = i \end{cases}$$

8. Montrer que (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$.

Cette base est appelée base de Lagrange associée aux points (x_0, \ldots, x_n) .

9. On suppose que, pour tout $k \in \mathbb{N}$, l'intégrale $\int_I x^k w(x) dx$ est bien définie. Montrer que la formule de quadrature $I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$ est exacte sur $\mathbb{R}_n[X]$ si et seulement si :

$$\forall j \in [0, n], \quad \lambda_j = \int_I L_j(x) w(x) dx$$

10. On se place dans le cas I = [0, 1] et : $\forall x \in I, w(x) = 1$. Déterminer la base de Lagrange associée aux points $\left(0, \frac{1}{2}, 1\right)$ et retrouver ainsi les coefficients de la formule de quadrature $I_2(f)$ de la question $\boldsymbol{5}$.

C - Noyau de Peano et évaluation de l'erreur

Dans cette sous-partie, on suppose que l'intervalle I est un segment : I = [a, b], avec : a < b. Pour tout entier naturel m, on considère la fonction $\varphi_m : \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$\forall (x,t) \in \mathbb{R}^2, \quad \varphi_m(x,t) = \begin{cases} (x-t)^m & \text{si } x \geqslant t \\ 0 & \text{si } x < t \end{cases}$$

On observe que $x \mapsto \varphi_m(x,t)$ et $t \mapsto \varphi_m(x,t)$ sont continues si $m \ge 1$ et discontinues si m = 0. On considère une formule de quadrature $I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$.

On note $m \in \mathbb{N}$ l'ordre de cette formule et on cherche à évaluer l'erreur associée :

$$e(f) = \int_{a}^{b} f(x) w(x) dx - \sum_{j=0}^{n} \lambda_{j} f(x_{j})$$

On suppose que f est de classe C^{m+1} sur I.

11. À l'aide de la formule de Taylor avec reste intégral, démontrer $e(f) = e(R_m)$ où R_m est définie par :

$$\forall x \in [a, b], \quad R_m(x) = \frac{1}{m!} \int_a^b \varphi_m(x, t) f^{(m+1)}(t) dt$$

12. En déduire, si $m \geqslant 1$:

$$e(f) = \frac{1}{m!} \int_a^b K_m(t) f^{(m+1)}(t) dt$$

où la fonction $K_m:[a,b]\to\mathbb{R}$ est définie par :

$$\forall t \in [a, b], \quad K_m(t) = e(x \mapsto \varphi_m(x, t)) = \int_a^b \varphi_m(x, t) w(x) \, dx - \sum_{j=0}^n \lambda_j \varphi_m(x_j, t)$$

On pourra utiliser le résultat admis suivant : pour toute fonction continue $g:[a,b]^2 o \mathbb{R}$, on a :

$$\int_{a}^{b} \left(\int_{a}^{b} g(x,t) dt \right) dx = \int_{a}^{b} \left(\int_{a}^{b} g(x,t) dx \right) dt$$

La fonction K_m est appelée noyau de Peano associé à la formule de quadrature. On admet que cette expression de e(f) reste valable pour m=0.

D - Exemple : méthode des trapèzes

Dans cette sous-partie, on suppose que I est un segment et : $\forall x \in I, w(x) = 1$. On se place d'abord dans le cas I = [0, 1] et on considère la formule de quadrature :

$$I_1(g) = \frac{g(0) + g(1)}{2}$$

qui est d'ordre m = 1 (on ne demande pas de le montrer).

13. Calculer le noyau de Peano associé $t \mapsto K_1(t)$ et montrer que, pour toute fonction g de classe \mathcal{C}^2 de [0,1] dans \mathbb{R} , on a la majoration suivante de l'erreur de quadrature associée :

$$\left| e(g) \right| \leqslant \frac{1}{12} \sup_{x \in [0,1]} \left| g''(x) \right|$$

On se place maintenant dans le cas d'un segment quelconque I = [a, b] (avec a < b), qu'on subdivise en n + 1 points a_0, \ldots, a_n équidistants :

$$\forall i \in [0, n], \quad a_i = a + i h$$

où $h = \frac{b-a}{n}$ est le pas de la subdivision.

On considère alors la formule de quadrature :

$$T_n(f) = \frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(a_i) + f(a_{i+1})}{2}$$

appelée $m\acute{e}thode$ des $trap\`{e}zes$. L'erreur de quadrature associée est notée :

$$e_n(f) = \int_a^b f(x) dx - T_n(f)$$

- 14. Représenter graphiquement $T_n(f)$.
- 15. On suppose que f est une fonction de classe \mathcal{C}^2 de [a,b] dans \mathbb{R} . Démontrer :

$$e_n(f) = \frac{b-a}{n} \sum_{i=0}^{n-1} e(g_i)$$

où e est l'erreur associée à la formule de quadrature I_1 étudiée à la question 13 et les $g_i : [0,1] \to \mathbb{R}$ sont des fonctions à préciser.

16. En déduire la majoration d'erreur :

$$|e_n(f)| \le \frac{(b-a)^3}{12 n^2} \sup_{x \in [a,b]} |f''(x)|$$

Problème II

Dans tout le problème, n désigne un entier naturel non nul et E un \mathbb{C} -espace vectoriel de dimension n. Si $M \in \mathcal{M}_n(\mathbb{C})$, on note M^T la transposée de la matrice M.

Si $M \in \mathscr{M}_n(\mathbb{C})$, on définit la suite des puissances de M par $M^0 = I_n$ et, pour tout entier naturel $k : M^{k+1} = M M^k$.

De même, si u est un endomorphisme de E, on définit la suite des puissances de u par $u^0 = \mathrm{id}_E$ et, pour tout entier naturel $k: u^{k+1} = u \circ u^k$.

Une matrice M est dite nilpotente s'il existe un entier naturel $k \ge 1$ tel que : $M^k = 0$. Dans ce cas, le plus petit entier naturel $k \ge 1$ tel que : $M^k = 0$, est appelé indice de nilpotence de M.

Soit \mathscr{B} une base de E. Un endomorphisme de E est nilpotent d'indice p si l'entier $p \ge 1$ est le plus petit entier naturel k tel que : $u^k = 0_{\mathscr{L}(E)}$.

On pose :
$$J_1 = (0)$$
 et, pour tout $\alpha \in [2, +\infty[$: $J_{\alpha} = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{\alpha}(\mathbb{C}).$

Si $A \in \mathcal{M}_n(\mathbb{C})$ et $B \in \mathcal{M}_m(\mathbb{C})$, on note diag(A, B), la matrice diagonale par blocs:

$$\operatorname{diag}(A,B) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \in \mathcal{M}_{n+m}(\mathbb{C})$$

Plus généralement, si $A_1 \in \mathcal{M}_{n_1}(\mathbb{C}), A_2 \in \mathcal{M}_{n_2}(\mathbb{C}), \ldots, A_k \in \mathcal{M}_{n_k}(\mathbb{C}),$ on note :

$$\operatorname{diag}(A_{1}, A_{2}, \dots, A_{k}) = \begin{pmatrix} A_{1} & 0 & \cdots & 0 \\ 0 & A_{2} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A_{k} \end{pmatrix} \in \mathcal{M}_{n_{1}+n_{2}+\cdots+n_{k}}(\mathbb{C})$$

A - Nilpotence d'indice 1

17. Que peut-on dire d'un endomorphisme nilpotent d'indice 1?

B - Réduction d'une matrice de $\mathscr{M}_2(\mathbb{C})$ nilpotente d'indice 2

On suppose : n=2. Soit u un endomorphisme de E nilpotent d'indice $p \ge 2$.

- 18. Montrer qu'il existe un vecteur x de E tel que : $u^{p-1}(x) \neq 0$.
- 19. Vérifier que la famille $(u^k(x))_{0 \le k \le p-1}$ est libre. En déduire : p=2.
- **20.** Démontrer : Ker(u) = Im(u).
- **21.** Construire une base (e_1, e_2) de E telle que : $u(e_1) = e_2$ et $u(e_2) = 0_E$.

C - Réduction d'une matrice de $\mathscr{M}_n(\mathbb{C})$ nilpotente d'indice 2

On suppose : $n \ge 3$. Soit u un endomorphisme de E nilpotente d'indice 2 et de rang r.

- **22.** Démontrer : $\operatorname{Im}(u) \subset \operatorname{Ker}(u)$ et $2r \leq n$.
- 23. On suppose : $\operatorname{Im}(u) = \operatorname{Ker}(u)$. Montrer qu'il existe des vecteurs e_1, e_2, \ldots, e_r de E tels que $(e_1, u(e_1), e_2, u(e_2), \ldots, e_r, u(e_r))$ est une base de E.
- 24. Déterminer les images par u des vecteurs de la base définie en question 23.
- **25.** On suppose : $\text{Im}(u) \neq \text{Ker}(u)$. Montrer qu'il existe des vecteurs e_1, e_2, \ldots, e_r de E et des vecteurs $v_1, v_2, \ldots, v_{n-2r}$ appartenant à Ker(u) tels que $(e_1, u(e_1), e_2, u(e_2), \ldots, e_r, u(e_r), v_1, \ldots, v_{n-2r})$ est une base de E.
- **26.** Déterminer les images par u des vecteurs de la base définie en question **25**.