DS6 /104

On traitera OBLIGATOIREMENT les questions portant un astérisque. Elles sont au nombre de 1. Dans le cas contraire, la note finale se verra divisée par 2.

Exercice 1: Cours /8

1. (*) Résoudre l'équation différentielle suivante :

$$(E) \qquad y'' + y = \cos(x)$$

- 1 pt : L'ensemble des solutions de (H) est : $\{x \mapsto \lambda_1 \cos(x) + \lambda_2 \sin(x) \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2\}$.
- 1 pt : La fonction $h: x \mapsto a \, x \, \mathrm{e}^{ix}$ est deux fois dérivable sur $\mathbb R$ en tant que produit de fonctions deux fois dérivables sur $\mathbb R$
- 1 pt : $h': x \mapsto a(1+ix) e^{ix}$ et $h'': x \mapsto a(2i-x) e^{ix}$
- 2 pts : h solution de $(E') \Leftrightarrow a = -\frac{1}{2}i$
 - \times 1 pt : comme $|\mathbf{e}^{ix}| = 1$, alors : $\mathbf{e}^{ix} \neq 0$
 - × 1 pt : reste
- 1 pt : $g: x \mapsto -\frac{1}{2} i x e^{ix}$ est une solution particulière de (E')
- 1 pt : Re $(g): x \mapsto \frac{1}{2} x \sin(x)$
- 1 pt : l'ensemble des solutions de (E) est : $\{x \mapsto \lambda_1 \cos(x) + \lambda_2 \sin(x) + \frac{1}{2} x \sin(x) \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2\}$

Exercice 2 /25

On désigne par I la matrice identité de $\mathcal{M}_3(\mathbb{R})$ et on note : $A = \begin{pmatrix} -2 & 0 & 0 \\ -2 & -1 & -1 \\ -2 & 1 & -3 \end{pmatrix}$.

- 1. a) Calculer $(A + 2I)^2$.
 - 1 pt : $(A + 2I)^2 = 0_{\mathcal{M}_3(\mathbb{R})}$
 - \boldsymbol{b}) En déduire que A est inversible et déterminer A^{-1} .
 - 1 pt : $(A + 2I)^2 = A^2 + 4A + I$ car A et I commutent
 - 1 pt : $A^{-1} = -\frac{1}{4} \cdot A I$
- 2. On note : $E_{-2}(A) = \{X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AX = -2X\}$. Déterminer $E_{-2}(A)$.
 - 1 pt : écriture système $\begin{cases} & 0 = 0 \\ -2x + y z = 0 \\ -2x + y z = 0 \end{cases}$
 - 1 pt : résolution système $\{z = -2x + y\}$

• 1 pt :
$$E_{-2}(A) = \text{Vect}\left(\begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}\right)$$

- 3. On note $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ -2 & -1 & -2 \end{pmatrix}$.
 - a) Démontrer que P est inversible et déterminer son inverse.
 - 1 pt : étape de calcul $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$
 - ullet 1 pt : justification inversibilité
 - 1 pt : $P^{-1} = \begin{pmatrix} -3 & 1 & -2 \\ 2 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}$
 - **b)** Montrer que $P^{-1}AP = T$ où T est la matrice triangulaire supérieure $T = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & -2 \end{pmatrix}$.
 - 1 pt : $AP = \begin{pmatrix} -2 & -2 & -2 \\ 0 & -2 & 1 \\ 4 & 2 & 3 \end{pmatrix}$ ou $P^{-1}A = \begin{pmatrix} 8 & -3 & 5 \\ -6 & 1 & -3 \\ -4 & 2 & -2 \end{pmatrix}$
 - c) Démontrer : $\forall n \in \mathbb{N}, P^{-1}A^nP = T^n$.
 - 1 pt : initialisation
 - 2 pts : hérédité
- **4.** a) Exhiber une matrice $N \in \mathcal{M}_3(\mathbb{R})$ telle que T s'écrit T = -2I + N.
 - 1 pt : $N = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
 - b) Calculer N^2 et en déduire N^k pour tout $k \in \mathbb{N}$.
 - 1 pt : $N^2 = 0_{\mathcal{M}_3(\mathbb{R})}$
 - 1 pt : reste (récurrence ou $N^k = N^{k-2} \times N^2$)
 - c) Soit $n \in \mathbb{N}$. Déterminer T^n à l'aide de la formule du binôme de Newton. Le résultat devra faire apparaître T^n comme combinaison linéaire de I et de N.
 - 1 pt : -2I et N commutent
 - 1 pt : découpage valable car $n \ge 1$
 - 1 pt : $\forall k \geqslant 2, \ N^k = 0_{\mathcal{M}_3(\mathbb{R})}$
 - 1 pt : $I^{n-k} = I$
 - 1 pt : $T^n = (-2)^{n-1}(-2I + nN)$
 - 1 pt : cas n = 0
 - d) Soit $n \in \mathbb{N}$. Exprimer enfin T^n comme combinaison linéaire de I et de T.
 - 1 pt : $T^n = (-2)^{n-1} (2(n-1)I + nT)$
- **5.** a) Expliquer pourquoi l'on a : $\forall n \in \mathbb{N}, A^n = (-2)^{n-1} (2(n-1)I + nA).$
 - 1 pt : $A^n = (-2)^{n-1} (2(n-1)I + nA)$
 - b) Vérifier que la formule trouvée à la question 5.a) reste valable pour n=-1.
 - 1 pt

Exercice 3 /33

On note I l'intervalle [0,1]. Soient f et g deux fonctions continues sur I, $\hat{\mathbf{a}}$ valeurs dans I. On supposera dans tout le problème que f et g commutent, c'est-à-dire :

$$\forall x \in I, \quad (f \circ g)(x) = (g \circ f)(x)$$

Le but de ce problème est de répondre à la question suivante :

(Q) : « f et g possèdent-elles un point fixe en commun dans I? »

Dans tout le problème, on notera $h: x \mapsto f(x) - x$.

Partie I - Ensemble des points fixes

- 1. Montrer que la fonction f possède au moins un point fixe dans I.
- 1 pt : $h(0) \ge 0$ et $h(1) \le 0$
- 1 pt : continuité de f sur I = [0, 1]

Pour les mêmes raisons, la fonction g possède également au moins un point fixe dans I. On note F (resp. G) l'ensemble des points fixes de f (resp. de g) dans I.

- 2. Montrer que G est stable par f, c'est-à-dire : $\forall x \in G$, alors $f(x) \in G$. On montrerait de même, et on l'admettra ici, que F est stable par g.
 - 1 pt : commutativité de f et g
 - 1 pt : utilisation de $x \in G$
- 3. Montrer que F possède une borne inférieure m et une borne supérieure M.
 - \bullet 1 pt : l'ensemble F est non vide d'après la question précédente
 - 1 pt : F minorée par 0 car $F \subset [0,1]$
 - 1 pt : l'ensemble F est non vide et majorée par 0
- 4. Rappeler la caractérisation de la borne inférieure :

$$m = \inf(F) \Leftrightarrow \left\{ \begin{array}{c} \cdots \\ \cdots \end{array} \right.$$

- 1 pt
- 5. En déduire qu'il existe une suite $(\ell_n)_{n\in\mathbb{N}^*}$ d'éléments de F telle que : $\forall n\in\mathbb{N}^*, \ \ell_n-m\leqslant \frac{1}{n}$.
 - 1 pt : on applique la question précédente à $\varepsilon = \frac{1}{n} > 0$
- 6. En déduire : $\ell_n \xrightarrow[n \to +\infty]{} m$. Puis : $m \in F$.

 On montrerait de même, et on l'admettra ici, que $M \in F$.
 - 1 pt : comme $m = \inf(F)$, alors $0 \le \ell_n m \le \frac{1}{n}$
 - 1 pt : par théorème d'encadrement $\lim_{n \to +\infty} \ell_n = m$
 - 1 pt : $m \in [0,1]$
 - 1 pt : par continuité de f en m, f(m) = m et donc $m \in F$

Partie II - Une condition suffisante : la stricte décroissance de f sur I

On suppose, **uniquement dans cette partie**, que la fonction f, en plus d'être continue sur I, est strictement décroissante sur I.

- 7. Montrer qu'il existe un unique élément $\ell \in F$.
 - 1 pt : h strictement décroissante sur I (attention, h n'est pas dérivable sur I)
 - 1 pt : hypothèses théorème de la bijection
 - 1 pt : h(I) = [h(1), h(0)]
 - 1 pt : $0 \in [h(1), h(0)]$
- 8. Démontrer : $g(\ell) \in F$.
 - 1 pt : F stable par g donc $g(\ell) \in F$ (car $\ell \in F$)
- 9. Déduire des deux questions précédentes : $\ell \in G$.
 - 1 pt : $g(\ell) \in F = {\{\ell\}}$
- 10. Conclure quant à la question (Q) dans ce cas.
 - 1 pt

Partie III - Une condition suffisante (bis) : la stricte croissance de f sur I

On suppose, **uniquement dans cette partie**, que la fonction f, en plus d'être continue sur I, est strictement croissante sur I. On définit une suite $(x_n)_{n\in\mathbb{N}}$ de la manière suivante :

$$\begin{cases} x_0 \in G \\ \forall n \in \mathbb{N}, \ x_{n+1} = f(x_n) \end{cases}$$

- 11. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est bien définie et : $\forall n\in\mathbb{N}, x_n\in G$.
 - 1 pt : initialisation (existence assurée en qst 1.)
 - 2 pts : hérédité (dont 1 pt pour stabilité de G par f d'après 2.)
- 12. On suppose : $x_1 \ge x_0$. Démontrer : $\forall n \in \mathbb{N}, x_{n+1} \ge x_n$. Que se passe-t-il si $x_1 \le x_0$?
 - 1 pt: initialisation
 - 2 pts : hérédité
 - 1 pt : si $x_1 \leqslant x_0$, alors $\forall n \in \mathbb{N}, x_{n+1} \leqslant x_n$
- 13. En déduire que la suite $(x_n)_{n\in\mathbb{N}}$ converge vers un réel $\hat{\ell}$ et : $\hat{\ell}\in F$.
 - 1 pt : (x_n) monotone
 - 1 pt : (x_n) bornée car $\forall n \in \mathbb{N}, x_n \in G \subset [0,1]$
 - 1 pt : (x_n) converge vers $\hat{\ell}$ avec $0 \leqslant \hat{\ell} \leqslant 1$
 - 1 pt : continuité de f en $\hat{\ell}$ pour démontrer $\hat{\ell} \in F$
- 14. Démontrer : $\hat{\ell} \in G$.
 - 1 pt : continuité de g en $\hat{\ell}$ car $x_n \in G$
- 15. Conclure quant à la question (Q) dans ce cas.
 - 1 pt

Exercice 4 /38

Soit $n \in \mathbb{N}^*$.

- On note $\mathbb{U}_n = \left\{ \mathrm{e}^{\frac{2ik\pi}{n}} \mid k \in [0, n-1] \right\}$ l'ensemble des racines $n^{\mathrm{\`e}me}$ de l'unité, c'est-à-dire l'ensemble des complexes ω vérifiant : $\omega^n = 1$.
- On dit qu'un complexe ω est une racine **primitive** $n^{\rm ème}$ de l'unité si :
 - 1) $\omega^n = 1$,
 - 2) $\forall q \in [1, n-1], \, \omega^q \neq 1.$

En d'autres termes, une racine primitive $n^{\text{ème}}$ de l'unité est une racine $n^{\text{ème}}$ de l'unité pour laquelle n est la plus petite puissance q (non nulle) telle que : $\omega^q = 1$.

- On note P_n l'ensemble des racines primitives $n^{\text{ème}}$ de l'unité.
- On admet enfin le résultat suivant.

$$\forall (a, b, c) \in \mathbb{Z}^3, \quad \begin{array}{c} a \mid bc \\ a \wedge b = 1 \end{array} \right\} \Rightarrow (a \mid c)$$

Partie I - Caractérisation des racines primitives $n^{\text{ème}}$ de l'unité

Soit $n \in \mathbb{N}^*$.

- 1. Expliciter sans démonstration les ensembles P_1 , P_2 , P_3 et P_4 .
 - 1 pt : $P_1 = \{1\}$
 - 1 pt : $P_2 = \{-1\}$
 - 1 pt : $P_3 = \{j, j^2\}$
 - 1 pt : $P_4 = \{i, -i\}$
- 2. a) Soit $k \in [0, n-1]$ tel que : $k \wedge n \neq 1$. Démontrer : $e^{\frac{2ik\pi}{n}} \notin P_n$.
 - 1 pt : $d = k \land n \in [2, n-1]$
 - 1 pt : n = dq où $q \in [[2, n-1]]$
 - 1 pt : $\left(e^{\frac{2ik\pi}{n}}\right)^q = 1$ car $p \in \mathbb{Z}$
 - **b)** Réciproquement, soit $k \in [0, n-1]$ tel que : $k \wedge n = 1$. En raisonnant par l'absurde, justifier : $e^{\frac{2ik\pi}{n}}$ est une racine primitive $n^{\text{ème}}$ de l'unité.
 - 1 pt : $\left(e^{\frac{2ik\pi}{n}}\right)^n \neq 1$ absurde!
 - 1 pt : sinon $\frac{2kq\pi}{n} \equiv 0$ $[2\pi]$
 - 1 pt : $n \mid kq$ et $n \wedge k = 1$ donc $n \mid q$. Absurde!

On a donc prouvé:

$$P_n = \left\{ e^{\frac{2ik\pi}{n}} \mid k \in [0, n-1], \ k \wedge n = 1 \right\}$$

En particulier, $e^{\frac{2i\pi}{n}}$ est une racine primitive $n^{\text{ème}}$ de l'unité.

Soient z_1 et z_2 deux racines primitives $n^{\text{ème}}$. On admet qu'il existe $u \in \mathbb{Z}$ tel que :

$$\begin{cases} u \wedge n = 1 \\ z_1^u = z_2 \end{cases}$$

Partie II - Définition et premières propriétés des polynômes cyclotomiques

Dans la suite de ce problème, pour tout $n \in \mathbb{N}^*$, on définit le $n^{\text{ème}}$ polynôme cyclotomique par :

$$\Phi_n = \prod_{\omega \in P_n} (X - \omega) = \prod_{\substack{k=0 \ k \land n-1}}^{n-1} (X - e^{\frac{2ik\pi}{n}})$$

- 3. Soit $n \in \mathbb{N}^*$. Factoriser sur \mathbb{C} le polynôme $X^n 1$.
 - 1 pt : $X^n 1 = \prod_{k=0}^{n-1} (X e^{\frac{2ik\pi}{n}})$
- 4. Écrire sous forme développée Φ_2 , Φ_3 , Φ_4 .

Vérifier en particulier que ces polynômes sont à coefficients entiers.

• 1 pt :
$$\Phi_2(X) = X + 1$$

• 1 pt :
$$\Phi_3(X) = X^2 + X + 1$$

• 1 pt :
$$\Phi_4(X) = X^2 + 1$$

5. a) Justifier : $\Phi_5(X) = \frac{X^5 - 1}{X - 1}$.

• 1 pt :
$$\frac{X^5 - 1}{X - 1} = \prod_{k=1}^4 (X - e^{\frac{2ik\pi}{5}})$$

• 1 pt :
$$\prod_{k=1}^{4} (X - e^{\frac{2ik\pi}{5}}) = \Phi_5(X)$$

b) En déduire une forme développée de Φ_5 .

• 1 pt :
$$\Phi_5(X) = \sum_{k=0}^4 X^k$$

c) Plus généralement, si $p \in [2, +\infty[$ est un nombre premier, calculer Φ_p (on exprimera Φ_p sous forme de somme).

• 1 pt :
$$\Phi_p(X) = \prod_{k=1}^{p-1} (X - e^{\frac{2ik\pi}{p}})$$

• 1 pt :
$$\Phi_p(X) = \frac{X^p - 1}{X - 1} = \sum_{k=0}^{p-1} X^k$$

- 6. Soit $n \in \mathbb{N}^*$.
 - a) Si d est un diviseur (positif) de n, on note :

$$E_d = \{k \in [0, n-1] \mid k \land n = d\}$$

Justifier :
$$[0, n-1]$$
 = $\bigcup_{\substack{d=1\\d\mid n}}^{n} E_d$.

• 2 pts : 1 pt par inclusion

b) Soit d un diviseur de n. On note :

$$F_d = \{k \in [0, \frac{n}{d} - 1] \mid k \wedge \frac{n}{d} = 1\}$$

Justifier que E_d et F_d sont en bijection.

• 2 pts : f : E_d \rightarrow F_d bien définie

$$k \mapsto \frac{k}{d}$$

$$\times$$
 1 pt : $f(k) \in [0, n-1]$

$$\times$$
 1 pt: $f(k) \wedge \frac{n}{d} = 1$

- 1 pt : f injective
- 1 pt : f surjective
- c) Démontrer :

$$\prod_{k \in E_d} (X - e^{\frac{2ik\pi}{n}}) = \Phi_{\frac{n}{d}}(X)$$

- 1 pt : changement d'indice $p=rac{k}{d},$ $\prod\limits_{k\in E_d}(X-\mathrm{e}^{rac{2ik\pi}{n}})=\prod\limits_{p\in F_d}(X-\mathrm{e}^{rac{2i\,dp\,\pi}{n}})$
- 1 pt : $\prod_{k \in E_d} (X \mathbf{e}^{\frac{2ik\pi}{n}}) = \Phi_{\frac{n}{d}}(X)$
- d) En déduire :

$$X^n - 1 = \prod_{\substack{d=1\\d \mid n}}^n \Phi_d(X)$$

- 1 pt : $X^n 1 = \prod_{k \in A_n} (X e^{\frac{2ik\pi}{n}})$ (d'après 6.a), en notant : $A_n = \bigcup_{\substack{d=1 \ d+n}}^n E_d$)
- 1 pt : $X^n 1 = \prod_{\substack{d=1\\d+n}}^n \left(\prod_{k \in E_d} (X e^{\frac{2ik\pi}{n}})\right)$ (par produit par paquets)
- 1 pt : $X^n 1 = \prod_{\substack{d=1\\d+n}}^n \Phi_{\frac{n}{d}}(X)$
- 1 pt : changement d'indice $p = \frac{n}{d}$ pour conclure
- 7. Le but de cette question est de montrer par récurrence, pour tout $n \in \mathbb{N}^*$, $\mathscr{P}(n)$ où $\mathscr{P}(n): \Phi_n \in \mathbb{Z}[X]$.
 - a) Démontrer l'initialisation.
 - 1 pt : $\Phi_1(X) = X 1 \in \mathbb{Z}[X]$

Soit $n \in [2, +\infty[$. Supposons : $\forall k \in [1, n-1], \mathcal{P}(k)$. On cherche à démontrer $\mathcal{P}(n)$.

- a) Énoncer (sans démonstration) le théorème de division euclidienne sur $\mathbb{K}[X]$.
 - 1 pt

b) On admet que le théorème de division euclidienne est encore valable sur $\mathbb{Z}[X]$ si le polynôme diviseur est unitaire. Comparer la division euclidienne de X^n-1 par :

$$B = \prod_{\substack{d=1\\d\mid n}}^{n-1} \Phi_d$$

avec la question 6.d), et conclure.

(On justifiera bien qu'on peut appliquer le théorème de division euclidienne dans $\mathbb{Z}[X]$, et on précisera bien où on utilise l'hypothèse de récurrence)

- 1 pt : B unitaire
- 1 pt : par hypothèse de récurrence (forte), $B \in Z[X]$
- 1 pt : $X^n 1 = B(X) \times \Phi_n(X)$
- 1 pt : Φ_n et Q sont le quotient de la division euclidienne de A par B dans $\mathbb{C}[X]$ donc $\Phi_n = Q$
- 1 pt : $\Phi_n = Q \in \mathbb{Z}[X]$. D'où $\mathscr{P}(n)$