DS1/135

On traitera OBLIGATOIREMENT les questions portant un astérisque. Elles sont au nombre de 11. Dans le cas contraire, la note finale se verra divisée par 2.

Exercice 1 /38

On considère la fonction $f: [0, +\infty[\to \mathbb{R} \text{ définie, pour tout } x \text{ de }]0, +\infty[, \text{ par : }$

$$f(x) = e^x - e \ln(x).$$

On admet les encadrements numériques suivants :

$$2,7 < e < 2,8$$
 $7,3 < e^2 < 7,4$ $0,6 < ln(2) < 0,7.$

Partie I : Étude de la fonction f

- 1. a) Montrer que f est deux fois dérivable sur $]0, +\infty[$ et calculer, pour tout x de $]0, +\infty[$, f'(x) et f''(x).
 - 1 pt : f deux fois dérivable sur $]0, +\infty[$
 - 1 pt : $\forall x \in]0, +\infty[, f'(x) = \mathbf{e}^x \frac{\mathbf{e}}{x}]$ 1 pt : $\forall x \in]0, +\infty[, f''(x) = \mathbf{e}^x + \frac{\mathbf{e}}{x^2}]$

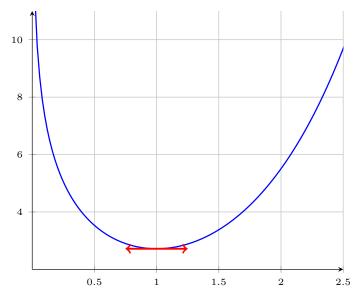
 - b) Dresser le tableau de variations de f' avec la limite de f' en 0 et la limite de f' en $+\infty$ et préciser f'(1).
 - 1 pt : signe de f''(x) et sens de variations de f'
 - 1 pt : limite de f' en $+\infty$ et en 0
 - 1 pt : calcul de f'(1)

x	() 1		$+\infty$
Signe de $f''(x)$		+	+	
Variations de f'				$+\infty$

- 2. Dresser le tableau de variations de f avec la limite de f en 0 et la limite de f en $+\infty$ et préciser f(1).
 - 1 pt : signe de f'(x) et sens de variations de f
 - 1 pt : limite de f en $+\infty$
 - 1 pt : limite de f en 0 et : calcul de f(1)

x	0 1	$+\infty$
Signe de $f'(x)$	- 0	+
Variations de f	+∞e	+∞

- 3. Tracer l'allure de la courbe représentative de f.
 - 4 pts : tangente, limites, cohérence avec le TV, propreté



- 4. a) Étudier les variations de la fonction $u: \begin{cases}]0, +\infty[\to \mathbb{R} \\ x \mapsto f'(x) x \end{cases}$
 - 1 pt : u dérivable sur $]0, +\infty[$
 - 1 pt : $\forall x \in]0, +\infty[, u'(x) = \frac{x^2(e^x 1) + e}{x^2}$
 - 1 pt : signe de u'(x) et sens de variations de u

x	0 +∞
Signe de $u'(x)$	+
Variations de u	+∞

- b) En déduire que l'équation f'(x) = x, d'inconnue $x \in]0, +\infty[$, admet une solution et une seule, notée α , et montrer : $1 < \alpha < 2$.
 - 1 pt : $f'(x) = x \Leftrightarrow u(x) = 0$
 - \bullet 3 pts : théorème de la bijection
 - × 1 pt : hypothèses
 - $\times 1 \text{ pt} : u(]0, +\infty[]) =]-\infty, +\infty[]$
 - \times 1 pt : $0 \in]-\infty, +\infty[$
 - 1 pt : $u(1) < u(\alpha) < u(2)$
 - 1 pt : application de u^{-1} : $]-\infty,+\infty[\to]0,+\infty[$ strictement croissante sur $]-\infty,+\infty[$

Partie II: Étude d'une suite

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

5. Montrer que, pour tout n de \mathbb{N} , u_n existe et $u_n \geq 2$.

1 pt : initialisation2 pts : hérédité

6. a) Étudier les variations, puis le signe, de la fonction $g: \left\{ \begin{array}{ccc} [2,+\infty[& \to & \mathbb{R} \\ x & \mapsto & f(x)-x \end{array} \right.$

• 1 pt : g dérivable sur $[2, +\infty[$ et $g': x \mapsto f'(x) - 1$

• 1 pt : signe de g'(x) et variations de g'(x)

x	2 +∞
Signe de $g'(x)$	+
Variations de g	$g(2)$ $+\infty$

- 1 pt : g(2) > 0
- b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - 1 pt : $\forall n \in \mathbb{N}, u_n \geqslant 2$
 - 1 pt : utilisation de : $\forall x \in [2, +\infty[, f(x) > x \text{ (qst précédente)}]$
- 7. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ admet $+\infty$ pour limite.
 - 1 pt : théorème de convergence monotone
 - 3 pts : raisonnement par l'absurde
 - × 1 pt : structure du raisonnement
 - \times 1 pt : $\ell \geqslant 2$ et $g(\ell) = 0$
 - \times 1 pt : d'après 6.a), $\forall x \ge 2$, $g(x) \ne 0$
- 8. (*) Écrire une fonction **Python**, prenant en paramètre un réel A, et renvoyant un entier naturel N tel que $u_N \geqslant A$.
 - 1 pt : importation bibliothèque
 - 1 pt : initialisation
 - 2 pts : boucle while et contenu

```
import numpy as np
def Entier_tq(A):
    N = 0
    u = 2
    while u < A:
        N = N + 1
        u = np.exp(u) - np.e * np.log(u)
    return N</pre>
```

Exercice 2 /12

Écrire de manière mathématique les propositions suivantes ainsi que leur négation. On évaluera ensuite la véracité de ces propositions.

- 1. Tout nombre réel x est inférieur ou égal à son cosinus.
 - 1 pt : Cette proposition s'écrit de la façon suivante : $\forall x \in \mathbb{R}, x \leq \cos(x)$.
 - 1 pt : Sa négation est : $\exists x_0 \in \mathbb{R}, x_0 > \cos(x_0)$.
 - 1 pt : En choisissant $x_0 = \frac{\pi}{2}$, on remarque que la négation de la proposition 1. est vraie. La proposition 1. est donc fausse.
- 2. (*) Tout réel de carré strictement supérieur à 4 est lui-même strictement supérieur à 2.
 - 1 pt : Cette proposition s'écrit de la façon suivante : $\forall x \in \mathbb{R}, (x^2 > 4) \Rightarrow (x > 2)$.
 - 1 pt : Sa négation est : $\exists x_0 \in \mathbb{R}, (x^2 > 4)$ ET $(x \le 2)$.
 - 1 pt : En choisissant $x_0 = -3$, on remarque que la négation de la proposition 1. est vraie. La proposition 1. est donc fausse.
- 3. Le trinôme $z^2 3z + 3$ admet une racine double dans \mathbb{R} .
 - 1 pt : Cette proposition s'écrit de la façon suivante : $\exists a_0 \in \mathbb{R}, \ z^2 3z + 3 = (z a_0)^2$
 - 1 pt : Sa négation est : $\forall a \in \mathbb{R}, z^2 3z + 3 \neq (z a)^2$.
 - 1 pt : $\Delta < 0$. Le trinôme $z^2 3z + 3$ n'admet donc aucune racine réelle. En particlier, il n'admet pas de racine double. La proposition 3. est donc fausse.
- 4. Toute suite d'entiers est majorée.
 - 1 pt : Cette proposition s'écrit de la façon suivante : $\forall (u_n)_{n\in\mathbb{N}}\in\mathbb{Z}^{\mathbb{N}},\ \exists M_0\in\mathbb{R}_+,\ \forall n\in\mathbb{N},\ |u_n|\leqslant M_0.$
 - 1 pt : Sa négation est : $\exists (u_n)_{n\in\mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}, \forall M \in \mathbb{R}_+, \exists n_0 \in \mathbb{N}, |u_{n_0}| > M$.
 - 1 pt : En choisissant la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N},\ u_n=n,\ldots$

Exercice 3 /14

Dans les paires suivantes, les propositions (à paramètre) sont-elles équivalentes pour toute valeur des paramètres? Si ce n'est pas le cas, donner les implications valables.

- 1. Paramètre : $x \in \mathbb{R}$. Propositions : $(x^2 > 5)$ et $(|x| > \sqrt{5})$.
 - 1 pt : par stricte croissance de la fonction $\sqrt{\cdot}$ sur \mathbb{R}_+, \ldots
- 2. Paramètre : $x \in \mathbb{R}$. Propositions : (x < 1) et $(x^2 < x)$.
 - 1 pt : En choisissant $x_0 = -2$, on remarque que les deux propositions ne sont pas équivalentes.
 - 1 pt : L'implication suivante est fausse : $(x < 1) \Rightarrow (x^2 < x)$. En effet, ...
 - 2 pts : démonstration de la réciproque (tableau de signes)
 - × 1 pt : structure de démonstration de l'implication
 - × 1 pt : reste

- 3. Paramètres : $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in (\mathbb{R}_+)^n$. Propositions : $(x_1 + \dots + x_n \leqslant n^2)$ et $(\forall i \in [1, n], x_i \leqslant n)$.
 - 1 pt : en choisissant n = 2 et $x_1 = 4$ et $x_2 = 0$, on remarque que les deux propositions ne sont pas équivalentes.
 - 1 pt : L'implication suivante est fausse : $(x_1 + \cdots + x_n \leq n) \Rightarrow (\forall i \in [1, n], x_i \leq n)$. En effet, ...
 - 2 pts : démonstration de la réciproque
 - × 1 pt : structure de démonstration de l'implication
 - × 1 pt : reste
- 4. Paramètre : une application $f : \mathbb{R} \to \mathbb{R}$. Propositions : $(f \text{ est croissante sur } \mathbb{R}) \text{ et } (\forall x \in \mathbb{R}, f(x+1) \geq f(x))$.
 - 2 pts : En choisissant $f: x \mapsto \sin(2\pi x)$, on remarque que les deux propositions ne sont pas équivalentes
 - × 1 pt : démonstration de la non croissance
 - × 1 pt : démonstration de la 1-périodicité

Toute réflexion pertinente sera valorisée

- 2 pts: $(f \text{ croissante sur } \mathbb{R}) \Rightarrow (\forall x \in \mathbb{R}, f(x+1) \geqslant f(x))$
 - × 1 pt : structure de démonstration de l'implication
 - \times 1 pt : reste
- 1 pt : L'implication suivante est fausse : $(\forall x \in \mathbb{R}, f(x+1) \ge f(x)) \Rightarrow (f \text{ est croissante sur } \mathbb{R})$

Exercice 4 /11

Pour chacune des propositions $P(\cdot)$ ci-dessous, déterminer si la proposition $Q(\cdot)$ est nécessaire, suffisante, les deux à la fois ou rien du tout (réponse à justifier).

1. (*) Paramètre : $x \in \mathbb{R}$.

Propositions : P(x) : $(x \ge 0)$ et Q(x) : $(x \ge 1)$.

- 1 pt : La proposition Q(x) n'est pas une condition nécessaire à P(x). En choisissant $x_0=0,\ldots$
- 1 pt : La proposition Q(x) est une condition suffisante à P(x)
- 2. Paramètre : $(a, b) \in \mathbb{R}^2$.

Propositions: P(a,b): $((a+b)^2 = a^2 + b^2)$ et Q(a,b): (a=b=0).

- 1 pt : La proposition Q(a,b) n'est pas une condition nécessaire à P(a,b). En choisissant $a_0=1$ et $b_0=0,\ldots$
- 1 pt : La proposition Q(a,b) est une condition suffisante à P(a,b).
- 3. Paramètre : $(a, b, c) \in \mathbb{R}^3$.

Propositions: P(a, b, c): (|a + b + c| = 0) et Q(a, b, c): (|a + b| + |c| = 0).

- 1 pt : La proposition Q(a,b,c) n'est pas une condition nécessaire à P(a,b,c). En choisissant $a_0 = 1, b_0 = 0$ et $c_0 = -1, \ldots$
- 1 pt : La proposition Q(a,b,c) est une condition suffisante à P(a,b,c).

4. Paramètre : $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$.

Propositions : $P((u_n)_{n\in\mathbb{N}})$: $(\forall N \in \mathbb{N}^*, (u_1 - u_0)(u_2 - u_1) \cdots (u_N - u_{N-1}) > 0)$ et $Q((u_n)_{n\in\mathbb{N}})$: (la suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante).

- 4 pts : La proposition $Q((u_n)_{n\in\mathbb{N}})$ est une condition nécessaire à $P((u_n)_{n\in\mathbb{N}})$
 - × 1 pt : structure de récurrence forte
 - × 1 pt : initialisation
 - × 2 pts : hérédité
- 1 pt : La proposition $Q((u_n)_{n\in\mathbb{N}})$ est une condition suffisante à $P((u_n)_{n\in\mathbb{N}})$.

Exercice 5 /28

Résoudre les équations et inéquations suivantes, d'inconnue $x \in \mathbb{R}$.

1. (*)
$$x+1=\sqrt{\frac{x}{6}+6}$$

3.
$$(*)$$
 $\sqrt{x-1} \leqslant |x|+1$

2.
$$\pi^{3x} - 3 \times \pi^x + 2 = 0$$

4.
$$|3x^2 + 2x - 1| < |-x^2 + 2x + 3|$$

1. • 1 pt :
$$\mathcal{D}_{(1)} = [-36, +\infty[$$

- 1 pt : obtention de la disjonction de cas : $x \in [-36, -1], x \ge -1$
- 1 pt : cas $x \in [-36, -1[$
- 3 pts : cas $x \ge -1$

$$\times$$
 1 pt : (1) \Leftrightarrow $6x^2 + 11x - 30 = 0$

 \times 1 pt : Le polynôme $6X^2 + 11X - 30$ admet pour racines $-\frac{1}{3}$ et $\frac{3}{2}$

$$\times$$
 1 pt : $-\frac{10}{2} < -1$

- 1 pt : L'ensemble des solutions de l'équation (1) est donc : $\{\frac{3}{2}\}$.
- 2. 1 pt : $\mathcal{D}_{(2)} = \mathbb{R}$
 - 1 pt : changement de variable $y = \pi^x$

• 1 pt:
$$X^3 - 3X + 2 = (X - 1)(X^2 + X - 2)$$

- 1 pt: $X^3 3X + 2 = (X 1)^2(X + 2)$
- 1 pt : $\pi^x \neq -2$
- 1 pt : L'ensemble des solutions de l'équation (2) est donc : {0}.
- 3. 1 pt : $\mathcal{D}_{(3)} = [1, +\infty[$
 - 1 pt : $\sqrt{x-1} \leqslant |x|+1 \Leftrightarrow \sqrt{x-1} \leqslant x+1$ (car $x \geqslant 1 \geqslant 0$)
 - 1 pt : stricte croissance de la fonction carré sur \mathbb{R}_+ (car $x+1 \ge 0$))
 - 1 pt : $X^2 + X + 2$ n'admet pas de racine et son coefficient dominant est positif. Donc : $x^2 + x + 2 \geqslant 0$
 - 1 pt : L'ensemble des solutions de l'inéquation (3) est donc : $\mathcal{D}_{(3)} = [1, +\infty[$.

4. • 1 pt : $\mathcal{D}_{(4)} = \mathbb{R}$

• 1 pt : signe de $3x^2 + 2x - 1$

x	$-\infty$		-1		$\frac{1}{3}$		$+\infty$
Signe de $3x^2 + 2x - 1$		+	0	_	0	+	

• 1 pt : signe de $-x^2 + 2x + 3$

x	$-\infty$		-1		3		$+\infty$
Signe de $-x^2 + 2x + 3$		_	0	+	0	_	

- 1 pt : obtention de la disjonction de cas : $x \in]-\infty,-1] \cup [3,+\infty, x \in]-1,\frac{1}{3}], x \in]\frac{1}{3},3]$
- 1 pt : L'inéquation (4) n'admet donc pas de solution sur $]-\infty,-1]\cup]3,+\infty[$.
- 2 pts : L'inéquation (4) admet donc pour solution tous les réels de l'intervalle $]-1,\frac{1}{3}]$ (dont 1 pt pour $x \neq -1$)
- 2 pts : L'inéquation (4) admet donc pour solution tous les réels de l'ensemble] $1,1[\ \cap\]\frac{1}{3},3]\ =\]\frac{1}{3},1[.$
- 1 pt : l'ensemble des solutions de l'inéquation (4) est : $]-1,\frac{1}{3}] \cup]\frac{1}{3},1[=]-1,1[$.

Exercice 6/22

1. Sommes de Mengoli

- a) (*) Calculer, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k(k+1)}$.
 - 1 pt: $\forall k \in \mathbb{N}^*$, $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$
 - 1 pt : $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k(k+1)} = 1 \frac{1}{n+1}$ (télescopage)
- b) Soit $p \in \mathbb{N}^*$.

En s'inspirant de la question précédente, calculer, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k(k+1)\cdots(k+p)}$.

• 1 pt :
$$\frac{1}{k(k+1)\cdots(k+p)} = \frac{1}{p} \left(\frac{1}{k(k+1)\cdots(k+p-1)} - \frac{1}{(k+1)(k+2)\cdots(k+p)} \right)$$

• 1 pt :
$$\frac{1}{k(k+1)\cdots(k+p)} = \frac{1}{p} \left(\prod_{i=0}^{p-1} \frac{1}{k+i} - \prod_{i=0}^{p-1} \frac{1}{k+1+i} \right)$$

• 1 pt :
$$\sum_{k=1}^{n} \frac{1}{k(k+1)\cdots(k+p)} = \frac{1}{p} \left(\sum_{k=1}^{n} \left(\prod_{i=0}^{p-1} \frac{1}{k+i} \right) - \sum_{j=2}^{n+1} \left(\prod_{i=0}^{p-1} \frac{1}{j+i} \right) \right)$$
 (avec le décalage d'indice $j = k+1$)

• 1 pt :
$$\frac{1}{p} \left(\sum_{k=1}^{n} \left(\prod_{i=0}^{p-1} \frac{1}{k+i} \right) - \sum_{j=2}^{n+1} \left(\prod_{i=0}^{p-1} \frac{1}{j+i} \right) \right) = \frac{1}{p} \left(\prod_{i=0}^{p-1} \frac{1}{i+1} - \prod_{i=0}^{p-1} \frac{1}{n+1+i} \right)$$
 (par télescopage)

• 1 pt:
$$\forall n \in \mathbb{N}^*$$
, $\sum_{k=1}^n \frac{1}{k(k+1)\cdots(k+p)} = \frac{1}{p} \left(\frac{1}{p!} - \frac{1}{(n+1)(n+2)\cdots(n+p+1)} \right)$

2. Minimum et maximum

a) (*) Soit $n \in \mathbb{N}^*$. Calculer les sommes suivantes :

$$\sum_{i\leqslant i,j\leqslant n} \min(i,j) \quad \text{et} \quad \sum_{1\leqslant i,j\leqslant n} \max(i,j)$$
• 8 pts:
$$\sum_{1\leqslant i,j\leqslant n} \min(i,j) = \frac{n\,(n+1)\,(2n+1)}{6}$$
× 1 pt:
$$\sum_{1\leqslant i,j\leqslant n} \min(i,j) = \sum_{i=1}^n \left(\sum_{j=1}^n \min(i,j)\right)$$
× 1 pt:
$$\sum_{j=1}^n \min(i,j) = \sum_{j=1}^n \min(i,j) + \sum_{j=1}^n \min(i,j)$$
× 1 pt:
$$\sum_{j=1}^n j + \sum_{j=1}^n i = \sum_{j=1}^i j + \sum_{j=i+1}^n i$$
× 1 pt:
$$\sum_{j=1}^n j + \sum_{j=i+1}^n i = \frac{i\,(i+1)}{2} + i\,(n-i)$$
× 1 pt:
$$\sum_{j=1}^i j + \sum_{j=i+1}^n i = \frac{i\,(i+1)}{2} + i\,(n-i)$$
× 1 pt:
$$\sum_{j=1}^i j + \sum_{j=i+1}^n i = \frac{i\,(i+1)}{2} + i\,(n-i)$$
× 1 pt:
$$\sum_{j=1}^n \left(\sum_{j=1}^n \min(i,j)\right) = -\frac{1}{2} \sum_{i=1}^n i^2 + \frac{2n+1}{2} \sum_{i=1}^n i$$
× 1 pt:
$$-\frac{1}{2} \sum_{i=1}^n i^2 + \frac{2n+1}{2} \sum_{i=1}^n i = -\frac{1}{2} \times \frac{n\,(n+1)\,(2n+1)}{6} + \frac{2n+1}{2} \times \frac{n\,(n+1)}{2}$$
× 1 pt:
$$\sum_{1\leqslant i,j\leqslant n} \min(i,j) = \frac{n\,(n+1)\,(2n+1)}{6}$$
• 4 pts:
$$\sum_{1\leqslant i,j\leqslant n} \max(i,j) = \frac{n\,(n+1)\,(4n-1)}{6}$$
× 2 pts:
$$\forall i \in \mathbb{N}^*, \sum_{i=1}^n \max(i,j) = \frac{1}{2} i^2 - \frac{1}{2} i + \frac{n\,(n+1)}{2}$$

- b) En déduire la valeur de la somme $\sum_{1 \leq i,j \leq n} (i+j)$.
 - 1 pt : $\forall (i,j) \in [\![1,n]\!]^2$, $i+j = \min(i,j) + \max(i,j)$
 - 1 pt : $\sum_{1 \le i,j \le n} (i+j) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \min(i,j) \right) + \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \max(i,j) \right)$
 - 1 pt: $\sum_{1 \le i,j \le n} (i+j) = n^2 (n+1)$

× 2 pts: reste

Exercice 7 /10

- 1. (*) Démontrer : $\sqrt{3} \notin \mathbb{Q}$.
 - 1 pt : structure de raisonnement par l'absurde
 - 1 pt : il existe $(a,b) \in \mathbb{N} \times \mathbb{N}^*$ (car $\sqrt{3} \geqslant 0$) tel que :
 - \times d'une part : $\sqrt{3} = \frac{a}{h}$,
 - \times d'autre part : a et b n'ont pas d'autres diviseurs communs que 1 (on dit que a et b sont premiers entre eux).
 - 1 pt : a^2 est divisible par 3
 - 3 pts : a est divisible par 3
 - \times 1 pt : structure de raisonnement par l'absurde
 - \times 1 pt : Soit il existe $k \in \mathbb{N}$ tel que a = 3k + 1
 - \times 1 pt : Soit il existe $k \in \mathbb{N}$ tel que a = 3k + 2
 - 1 pt : b^2 divisible par 3 donc b divisible par 3
- 2. Soit $n \in \mathbb{N}$. On admet :

$$(2+\sqrt{3})^n \in \mathbb{Q} \quad \Leftrightarrow \quad n=0$$

En déduire une condition nécessaire et suffisante sur n pour que $(2-\sqrt{3})^n \in \mathbb{Q}$. On pourra étudier le produit $(2+\sqrt{3})^n (2-\sqrt{3})^n$.

- 1 pt: $(2+\sqrt{3})^n (2-\sqrt{3})^n = 1$
- 1 pt : $(2+\sqrt{3})^n$
- 1 pt: $(2-\sqrt{3})^n \in \mathbb{Q} \Leftrightarrow \frac{1}{(2+\sqrt{3})^n} \in \mathbb{Q} \Leftrightarrow (2+\sqrt{3})^n \in \mathbb{Q} \Leftrightarrow n=0$