ESSEC I 2021

Dans ce problème, on s'intéresse à un modèle, inspiré du modèle de Cori, de propagation d'un virus au sein d'une population.

La Partie 1 introduit des outils théoriques permettant de définir et d'étudier ce modèle.

Les **Parties** 2 et 3 concernent cette étude. Si l'on fait abstraction des définitions, des notations et de la question 17, la **Partie** 3 est indépendante des **Parties** 1 et 2.

Partie 1 - Lois composées

On considère :

- \times un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et J un sous-ensemble non vide de \mathbb{R}_+ ;
- \times une variable aléatoire Y sur cet espace à valeurs dans J.
- × une famille $(X_t)_{t\in J}$ de variables aléatoires sur cet espace à valeurs dans \mathbb{N} et indépendantes de Y telles que pour tout $t\in J$:

$$X_t$$
 suit la loi $\mu(t)$

 $\mu(t)$ désignant une loi de probabilité de paramètre t.

On définit la variable aléatoire Z sur cet espace par :

$$\forall \omega \in \Omega$$
, si $Y(\omega) = t$ alors $Z(\omega) = X_t(\omega)$

et on dit que Z suit la loi $\mu(Y)$.

On considère dans cette partie une telle variable Z qui suit la loi $\mu(Y)$.

Commentaire

- Cet énoncé commence par l'introduction de la notion de « loi composée ». Comme il s'agit d'une notion qui n'est pas officiellement au programme de la filière, l'énoncé va consister à comprendre les mécanismes qui régissent celle-ci. De manière assez classique, l'énoncé va mêler questions théoriques permettant d'écrire les propriétés usuelles sur les lois composées et questions plus pratiques consistant à comprendre la notion en l'illustrant sur des cas particuliers. Ces dernières questions sont souvent l'occasion de démontrer toute sa maîtrise du cours. On reviendra sur ce point dans la suite du sujet.
- La notion de « loi composée » étant nouvelle, l'une des difficultés du sujet est de comprendre les objets introduits. En particulier, l'énoncé introduit :
 - \times une v.a.r. Y à valeurs dans un ensemble J. Cela signifie :

$$Y(\Omega) \subset J$$

(les valeurs prises par Y sont des éléments de J)

La valeur de cet ensemble n'est pas fixée et dépend de la v.a.r. Y d'étude. Plus précisément, cet ensemble prendra la valeur :

(i)
$$J = \{0, 1\}$$
 si $Y \hookrightarrow \mathcal{B}(p)$ où $p \in [0, 1]$.

(ii)
$$J = \llbracket 0, n \rrbracket$$
 si $Y \hookrightarrow \mathcal{B}(n, p)$ où $n \in \mathbb{N}^*$ et $p \in [0, 1[$.

(iii)
$$J = \mathbb{N}^* \text{ si } Y \hookrightarrow \mathcal{G}(p) \text{ où } p \in [0, 1[.$$

(iv)
$$J = [0, 1]$$
 si $Y \hookrightarrow \mathcal{U}([0, 1])$.

(v)
$$J = [0, +\infty[$$
 si $Y \hookrightarrow \mathcal{E}(\lambda)$ où $\lambda > 0$.

(vi) ...

Commentaire

 \times la famille $(X_t)_{t\in J}$. C'est une manière générique d'écrire des objets relativement différents :

- si J est un sous-ensemble fini de N, alors la famille $(X_t)_{t\in J}$ contient un nombre fini de variables aléatoires. Typiquement, dans le cas (i), $J = \{0, 1\}$ et on a alors affaire à une famille à deux v.a.r. notées X_0 et X_1 .

Dans le cas (ii), on a affaire à une famille constituée de n+1 v.a.r. X_0, \ldots, X_n .

– si J est un sous-ensemble infini de N, alors la famille $(X_t)_{t\in J}$ contient un nombre infini dénombrable de variables aléatoires.

Typiquement, dans le cas (iii), $J = \mathbb{N}^*$ et la famille peut alors s'écrire sous la forme :

$$(X_n)_{n\in\mathbb{N}^*}$$

Une telle famille de variables aléatoires, indexée par un ensemble infini dénombrable, est tout simplement une suite de variables aléatoires.

– si J est un sous-ensemble non dénombrable de réels, alors la famille $(X_t)_{t\in J}$ contient un nombre infini non dénombrable de variables aléatoires.

Typiquement, dans le cas (iv), J = [0, 1] et la famille peut alors s'écrire sous la forme :

$$(X_t)_{t \in [0,1[}$$

Une telle famille de variables aléatoires, indexée par un ensemble infini non dénombrable, est appelée un processus.

• Il est précisé ici que les variables de la famille $(X_t)_{t\in J}$ sont à valeurs dans \mathbb{N} . Cela signifie :

$$\forall t \in J, \ X_t(\Omega) \subset \mathbb{N}$$

(les valeurs prises par les v.a.r. de la famille $(X_t)_{t\in J}$ sont des éléments de N)

En particulier, les v.a.r. de la famille $(X_t)_{t\in J}$ seront donc toutes des v.a.r. discrètes.

- Il est par ailleurs précisé que, pour tout $t \in J$, la v.a.r. X_t suit une loi notée $\mu(t)$, notation générique pour désigner une loi qui dépend d'un paramètre t. Pour comprendre cette notation, on peut envisager les différentes valeurs possibles de l'ensemble J. Par exemple :
 - × si J =]0, 1[, on a affaire à un processus $(X_t)_{t \in]0,1[}$. Pour tout $t \in]0, 1[$, la v.a.r. X_t suit une loi notée $\mu(t)$. Cette loi peut par exemple être $\mathcal{G}(t)$ ou $\mathcal{B}(t)$.
 - × si $J = \mathbb{N}^*$, on a affaire à une suite $(X_n)_{n \in \mathbb{N}^*}$. Pour tout $n \in \mathbb{N}^*$, la v.a.r. X_n suit une loi notée $\mu(n)$. Cette loi peut par exemple être $\mathcal{U}(\llbracket 0, n \rrbracket)$ (cette loi dépend bien du paramètre n).
- Enfin, l'énoncé introduit la variable Z. Cette v.a.r. Z n'est autre que la v.a.r. X_Y (« X indice Y »). Plus précisément, il s'agit de la v.a.r. définie par :

$$Z: \omega \mapsto X_{Y(\omega)}(\omega)$$

 $\Omega \to \mathbb{R}$

Le concepteur a souhaité éviter cette notation consistant à indicer une variable aléatoire par les valeurs prises par une autre variable aléatoire. On peut comprendre ce choix car la notation $X_{Y(\omega)}(\omega)$ peut sembler ardue de premier abord : elle signifie que $Z(\omega)$ (évaluation de la v.a.r. Z en ω) est le résultat de l'évaluation en ω de la v.a.r. $X_{Y(\omega)}$.

Une autre manière de présenter les choses est de dire que si Y prend une valeur t, alors la variable Z prend la valeur prise par la variable X_t . Le concepteur a décidé de mettre en avant que, pour tout $\omega \in \Omega$, « si $Y(\omega) = t$ alors $Z(\omega) = X_t(\omega)$ ». C'est une présentation un peu maladroite car la présence d'un « si . . . alors . . . » laisse penser que la v.a.r. Z serait définie par cas et que seul le cas $Y(\omega) = t$ serait présenté. Il n'en est rien. Le concepteur signale simplement que pour tout $\omega \in \Omega$, si **on note** $t = Y(\omega)$ alors $Z(\omega) = X_t(\omega)$.

Commentaire

• Il est à noter que l'on trouve parfois cette notion de v.a.r. indicée par une autre dans les sujets de concours. Dans le sujet EML 2021, on peut notamment lire :

On considère une urne contenant initialement une boule bleue et une boule rouge. On procède à des tirages successifs d'une boule au hasard selon le protocole suivant :

- × si on obtient une boule bleue, on la remet dans l'urne et on ajoute une boule bleue supplémentaire;
- × si on obtient une boule rouge, on la remet dans l'urne et on arrête l'expérience.

On suppose que toutes les boules sont indiscernables au toucher et on admet que l'expérience s'arrête avec une probabilité égale à 1. On note N la variable aléatoire égale au nombre de boules présentes dans l'urne à la fin de l'expérience.

On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires indépendantes et de même loi. On suppose que, pour tout n de \mathbb{N}^* , les variables aléatoires X_1, \ldots, X_n et N sont mutuellement indépendantes. On définit la variable aléatoire $T = \max(X_1, \ldots, X_N)$, ce qui signifie :

$$\forall \omega \in \Omega, \ T(\omega) = \max (X_1(\omega), \dots, X_{N(\omega)}(\omega))$$

Dans ce sujet EML, la v.a.r. N d'indiciation prend uniquement des valeurs entières. Cela rend certainement plus simple la compréhension de la notation $Z = X_N$: si N prend la valeur 3 (par exemple) alors Z prend la valeur prise par la v.a.r. X_3 .

Pour tout $k \in \mathbb{N}$, on définit aussi la fonction f_k de J dans [0,1] par :

$$f_k(t) = \mathbb{P}([X_t = k])$$

Commentaire

- Il convient de faire la distinction entre :
 - \times f_k , qui est une fonction de J dans \mathbb{R} .
 - $\times f_k(t)$, image de t par la fonction f_k (résultat de l'évaluation de la fonction f_k au point t) qui est une quantité (un réel).

Si l'on souhaite présenter une fonction par le résultat de son évaluation en chacun de ses points, il serait préférable d'utiliser un quantificateur. Dans ce cas, pour tout $k \in \mathbb{N}$, on dira que f_k est la fonction définie par : $\forall t \in J$, $f_k(t) = \mathbb{P}([X_t = k])$.

• Rappelons qu'une fonction est un mécanisme d'association. Ainsi, pour tout $k \in \mathbb{N}$, la fonction f_k est définie par : $f_k : J \to \mathbb{R}$

$$t \mapsto f_k(t) = \mathbb{P}([X_t = k])$$

1. Un exemple avec Scilab. On considère le script Scilab suivant :

```
function r = X(t)
function r = X(t)
function r = X(t)
function
functio
```

En considérant les notations précédentes avec J =]0,1[et en notant Y la variable aléatoire dont Y est une simulation, compléter le script précédent pour que Z soit une simulation d'une variable aléatoire qui suit la loi géométrique $\mathcal{G}(Y)$.

Démonstration.

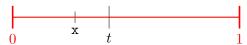
- Il s'agit de simuler une v.a.r. Z telle que $Z \hookrightarrow \mathcal{G}(Y)$. Ainsi, selon la définition de l'énoncé :
 - \times la famille $(X_t)_{t\in [0,1[}$ est un processus tel que :

$$\forall t \in [0, 1], X_t \hookrightarrow \mathcal{G}(t)$$

Rappelons tout d'abord que l'expérience standard associée à la loi géométrique $\mathcal{G}(t)$ est une succession infinie d'épreuves de Bernoulli indépendantes et de même paramètre de succès t. La v.a.r. X_t qui prend pour valeur le rang du premier succès de cette expérience suit alors la loi $\mathcal{G}(t)$.

L'énoncé propose d'écrire une fonction (en l'occurence X) permettant de simuler une v.a.r. de loi $\mathcal{G}(t)$ (où t est une variable d'entrée de la fonction). Ceci peut se faire à l'aide de rand(), instruction qui sert à simuler une v.a.r. U qui suit la loi $\mathcal{U}(]0,1[)$. Détaillons la manière de procéder.

On commence par choisir aléatoirement un réel (notons-le x) dans [0,1]:



Cette valeur \mathbf{x} obtenue est plus petite que t avec probabilité : $\mathbb{P}([U \leq t]) = t$. Cette valeur \mathbf{x} est strictement plus grande que t avec probabilité :

$$\mathbb{P}(\lceil U > t \rceil) = 1 - \mathbb{P}(\lceil U \leqslant t \rceil) = 1 - t$$

On peut ainsi simuler une épreuve de Bernoulli de paramètre de succès t: si $rand() \le t$ alors il y a succès (ce qui se produit avec probabilité t) et si rand() > t alors il y a échec (ce qui se produit avec probabilité 1 - t).

Cela permet d'écrire la fonction X de l'énoncé :

(i) on initialise tout d'abord à 1 un compteur permettant de mémoriser le numéro de l'épreuve de Bernoulli à venir.

$$\underline{2}$$
 $\mathbf{r} = 1$

(ii) on teste si l'épreuve résulte en un échec. Tant que c'est le cas, on doit réitérer l'expérience.

$$3$$
 while rand() > t

À chaque nouvelle expérience, on doit mettre à jour le compteur ${\bf r}$ qui stocke le numéro de l'épreuve à venir.

```
\frac{3}{4} while rand() > t
\frac{4}{5} end
```

On sort de la boucle en cas de réussite de l'épreuve de Bernoulli. Les mises à jour successives du compteur **r** assurent que cette variable contient le rang du premier succès dans la succesion d'épreuves de Bernoulli effectuées.

 $\times Z = X_Y$.

Informatiquement, cela se passe en deux temps:

(i) tout d'abord, on simule la v.a.r. Y.

$$8$$
 Y = rand()

On simule ainsi une v.a.r. Y telle que $Y \hookrightarrow \mathcal{U}(]0,1[)$.

Cela valide, après coup, le choix annoncé par le sujet : J = [0, 1[.

(ii) on simule ensuite la v.a.r. Z. Pour ce faire, on crée une variable informatique Z permettant de stocker la valeur prise par X_t où t est la valeur prise par la v.a.r. Y. Il faut alors noter que la valeur prise par Y est stockée dans la variable informatique Y. Ainsi, la valeur prise par X_Y résulte de l'appel à la fonction X évaluée en Y.

$$\underline{8}$$
 Y = rand()
 $\underline{9}$ Z = X(Y)
 $\underline{10}$ disp(Z)

Commentaire

• Afin de permettre une bonne compréhension des mécanismes en jeu, on a détaillé la réponse à cette question. Cependant, compléter correctement le programme **Scilab** démontre la bonne compréhension de la simulation demandée et permet certainement d'obtenir tous les points alloués à cette question.

On procédera de même dans les autres questions Scilab.

- Il est assez inhabituel de commencer un sujet de concours par une question **Scilab**. Comme le sujet introduit une nouvelle notion, on aurait pu s'attendre à ce que cette question **Scilab** soit pensée pour aider à comprendre la notion. Ce n'est que partiellement le cas. Il aurait certainement été plus judicieux d'annoncer que l'on cherchait à simuler une v.a.r. X_Y où $Y \hookrightarrow \mathcal{U}(]0,1[)$. Au lieu de cela, il faut extraire l'information $Y \hookrightarrow \mathcal{U}(]0,1[)$ du programme. C'est une première difficulté qui ne s'imposait pas forcément.
- Par ailleurs, la présentation de la question mérite elle aussi un commentaire. Lors de l'écriture d'un programme informatique, on se soumet généralement à quelques règles de bonne conduite :
- (1) utilisation de commentaires indiquant le but de chaque fonction,
- (2) réflexion autour du découpage en sous-fonctions pouvant être réutilisées,
- (3) utilisation de nom explicites pour les fonctions et les variables,
- (4) indentation du code (utilisation correcte d'espaces et sauts de lignes).

Le but de ces règles est de produire un code lisible, intelligible et facilement modifiable à l'avenir. Évidemment, on ne s'attend pas forcément, dans un sujet de concours, à ce que soit commentée la fonction dont il est demandé d'expliciter le calcul. Par contre, on s'attend à ce que les autres règles de bonne conduite soient respectées. Ne pas le faire correspond à ce que l'on nomme de l'**obfuscation** (pas forcément volontaire) de code. Sous ce terme, on désigne les méthodes permettant de rendre un code difficile à déchiffrer. Le but de telles techniques est de protéger son code. Typiquement, une entreprise ayant investi afin de développer un algorithme pourra procéder à une obfuscation de code afin que ses concurrents industriels ne puissent comprendre la manière dont procède cet algorithme.

Commentaire

• Ici, le découpage en sous-fonction est très bien réalisé.

En revanche, on peut s'étonner du choix des noms de variables informatiques et du nom de la fonction. Un compteur s'appelle généralement ${\tt c}$ ou ${\tt cpt}$ et pas ${\tt r}$. Il aurait aussi pu être pertinent d'appeler ${\tt X}$ cette variable puisqu'elle est censée contenir, en fin de boucle, la valeur prise par ${\tt X}$ obtenue par simulation. Concernant les fonctions, le nom sert généralement à décrire l'action réalisée. En l'occurrence, le nom ${\tt simuleX}$ aurait été plus pertinent.

On est aussi surpris des problèmes d'indentation. Le corps d'une fonction et d'une structure itérative doivent être indentés.

Finalement, il aurait donc été plus pertinent d'écrire le code comme suit :

```
____ function X = simuleX(t)
____ cpt = 1
____ while rand() > t
_____ cpt = cpt + 1
_____ end
____ X = cpt
____ endfunction
______
__ Y = rand()
_____ Z = simuleX(Y)
______ disp(Z)
```

- Cas où Y est discrète. On suppose dans les questions 2. et 3. que Y est discrète.
- 2. a) Soit $y \in Y(\Omega)$. Montrer que, pour tout $k \in \mathbb{N}$:

$$\mathbb{P}\big(\left[Z=k\right]\cap\left[Y=y\right]\big)\ =\ f_k(y)\ \mathbb{P}\big(\left[Y=y\right]\big)$$
et si $\mathbb{P}\big(\left[Y=y\right]\big)\neq 0$:
$$\mathbb{P}_{\left[Y=y\right]}\big(\left[Z=k\right]\big)\ =\ f_k(y)$$

Démonstration.

Soit $k \in \mathbb{N}$.

• Remarquons tout d'abord :

```
\mathbb{P}([Z=k] \cap [Y=y]) = \mathbb{P}([X_Y=k] \cap [Y=y]) 

= \mathbb{P}([X_y=k] \cap [Y=y]) 

= \mathbb{P}([X_y=k]) \times \mathbb{P}([Y=y]) 
= (car, pour tout y \in Y(\Omega), X_y \text{ et } Y \text{ sont indépendantes d'après l'énoncé}) 

= f_k(y) \mathbb{P}([Y=y]) 
(par définition de la fonction f_k)
```

Ainsi :
$$\forall y \in Y(\Omega), \forall k \in \mathbb{N}, \mathbb{P}([Z=k] \cap [Y=y]) = f_k(y) \mathbb{P}([Y=y]).$$

П

• De plus, si $\mathbb{P}([Y=y]) \neq 0$:

$$\mathbb{P}_{[Y=y]}([Z=k]) = \frac{\mathbb{P}_{[Y=y]}([Z=k])}{\mathbb{P}([Y=y])}$$

$$= \frac{f_k(y) \mathbb{P}([Y=y])}{\mathbb{P}([Y=y])} \qquad (d'après ce qui précède)$$

De plus, si
$$\mathbb{P}([Y=y]) \neq 0 : \mathbb{P}_{[Y=y]}([Z=k]) = f_k(y)$$
.

Commentaire

- Il est classique, dans les sujets qui débutent par une notion hors programme, de commencer par la manipuler sur les cas les plus simples. C'est pourquoi on commence par illustrer la notion de lois composées, en question 2. et 3., par des v.a.r. discrètes. Un bon conseil à donner aux candidats est de toujours traiter les questions qui suivent l'introduction d'une nouvelle notion / notation. En effet, ces questions sont souvent très abordables car il s'agit de familiariser le candidat avec les notations introduites. La difficulté est alors souvent progressive car il s'agit d'amener le candidat, petit à petit, à une bonne compréhension de la notion.
- En ce sens, ce sujet est une parfaite réussite. Les premières questions sont avant tout un jeu d'écriture. En particulier, cette première question consiste avant tout à écrire la définition de la fonction f_k . On peut la traiter sans une compréhension fine de la notion de lois composées. Comme on va le voir par la suite, la difficulté augmente au fur et à mesure de l'épreuve ce qui est un point important pour pouvoir bien classer les candidats.
- b) En déduire :

$$\mathbb{P}\big(\left[Z=k\right]\big) = \mathbb{E}\big(f_k(Y)\big) \qquad (1)$$

Démonstration.

• La famille $([Y = y])_{y \in Y(\Omega)}$ est un système complet d'événements. Ainsi, par la formule des probabilités totales, pour tout $k \in \mathbb{N}$:

$$\begin{split} \mathbb{P}\big(\left[Z=k\right]\big) &= \sum_{y \in Y(\Omega)} \mathbb{P}\big(\left[Y=y\right] \cap \left[Z=k\right]\big) \\ &= \sum_{y \in Y(\Omega)} f_k(y) \, \mathbb{P}\big(\left[Y=y\right]\big) \qquad \qquad (d'après \ la \ question \ précédente) \end{split}$$

- Deux cas se présentent alors.
 - $\times \underline{\text{Si}} Y(\Omega) \underline{\text{est fini}} :$ alors, d'après le théorème de transfert, $f_k(Y)$ admet une espérance. De plus :

$$\mathbb{E}(f_k(Y)) = \sum_{y \in Y(\Omega)} f_k(y) \, \mathbb{P}([Y = y])$$

 \times Si $Y(\Omega)$ est infini:

alors, d'après le théorème de transfert, $f_k(Y)$ admet une espérance si et seulement si la série $\sum_{y \in Y(\Omega)} f_k(y) \, \mathbb{P}\big([Y = y] \, \big) \text{ est absolument convergente.}$

Cela revient à démontrer la convergence car cette série est à termes positifs (en effet : $\forall k \in \mathbb{N}, f_k(y) \mathbb{P}([Y=y]) = \mathbb{P}([X_y=k]) \mathbb{P}([Y=y]) \ge 0).$

Cette convergence étant démontrée dans la première partie de la démonstration, on peut conclure que $f_k(Y)$ admet une espérance. De plus :

$$\mathbb{E}(f_k(Y)) = \sum_{y \in Y(\Omega)} f_k(y) \, \mathbb{P}([Y = y])$$

Finalement, on a bien, pour tout $k \in \mathbb{N}$, $\mathbb{P}([Z=k]) = \mathbb{E}(f_k(Y))$.

Commentaire

- Le théorème de transfert est un résultat incontournable et très largement utilisé dans les sujets du TOP3. Il est primordial de réussir à citer correctement ses hypothèses.
- Il est à noter que, dans cette question, on **démontre** que, pour toute v.a.r. discrète Y, la v.a.r. $f_k(Y)$ admet une espérance (cela fonctionne car f_k est une fonction particulière) et que celle-ci s'exprime sous la forme $\mathbb{P}([Z=k])$.
- c) Un exemple où $J = \mathbb{N}^*$. Soit $p \in]0,1[$. Si pour tout $n \in \mathbb{N}^*$, X_n suit la loi uniforme sur [1,n] et si la loi de Y est définie par, pour tout $n \in \mathbb{N}^*$:

$$\mathbb{P}([Y=n]) = n p^2 (1-p)^{n-1}$$

montrer que Z suit la loi géométrique de paramètre p.

Démonstration.

- D'après l'énoncé, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}([Y=n]) \neq 0$. On peut donc considérer : $Y(\Omega) = \mathbb{N}^*$.
- Comme $Y(\Omega) = \mathbb{N}^*$, la v.a.r. Y est une v.a.r. discrète. Ainsi, on est dans le cadre de l'utilisation de la question 2.b). On en déduit que, pour tout $k \in \mathbb{N}$, la v.a.r. $f_k(Y)$ admet une espérance. En particulier, si $k \in \mathbb{N}^*$, on a :

$$\mathbb{P}([Z = k]) \\
= \mathbb{E}(f_k(Y)) \\
= \sum_{y \in Y(\Omega)} f_k(y) \, \mathbb{P}([Y = y]) \\
= \sum_{n=1}^{+\infty} f_k(n) \, \mathbb{P}([Y = n]) \qquad (car \, Y(\Omega) = \mathbb{N}^*) \\
= \sum_{n=1}^{+\infty} \mathbb{P}([X_n = k]) \, \mathbb{P}([Y = n]) \qquad (par \, définition \, de \, f_k) \\
= \sum_{n=1}^{+\infty} \mathbb{P}([X_n = k]) \, \mathbb{P}([Y = n]) + \sum_{n=1}^{+\infty} \mathbb{P}([X_n = k]) \, \mathbb{P}([Y = n]) \\
= \sum_{n=k}^{+\infty} \mathbb{P}([X_n = k]) \, \mathbb{P}([Y = n])$$

• La dernière ligne est obtenue en constatant (pour $k \in \mathbb{N}^*$):

$$\left\{ \begin{array}{l} k \in X_n(\Omega) = \llbracket 1, n \rrbracket \\ n \in \llbracket 1, +\infty \llbracket \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 1 \leqslant k \leqslant n \\ 1 \leqslant n \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 1 \leqslant k \\ k \leqslant n \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} n \in \llbracket k, +\infty \llbracket n \right] \right\}$$

• Finalement :

$$\mathbb{P}([Z=k]) = \sum_{n=k}^{+\infty} \mathbb{P}([X_n=k]) \, \mathbb{P}([Y=n]) \\
= \sum_{n=k}^{+\infty} \frac{1}{n} \, \mathbb{P}([Y=n]) \qquad (car \, X_n \hookrightarrow \mathcal{U}([1,n])) \\
= \sum_{n=k}^{+\infty} \frac{1}{n} \, \mathbb{E}([Y=n]) \qquad (par \, définition \, de \, la \, loi \, de \, Y) \\
= \frac{p^2}{1-p} \sum_{n=k}^{+\infty} (1-p)^n \qquad (d'après \, la \, formule \, donnant \, la \, somme \, d'une \, série \, géométrique \, de \, raison \, (1-p) \in]0,1[) \\
= \frac{p}{1-p} \, (1-p)^k \qquad de \, raison \, (1-p) \in]0,1[)$$

Ainsi : $\forall k \in \mathbb{N}^*$, $\mathbb{P}([Z=k]) = p (1-p)^{k-1}$. On en conclut : $Z \hookrightarrow \mathcal{G}(p)$.

Commentaire

• La propriété (1) stipule que pour tout $k \in \mathbb{N}$:

$$\mathbb{P}([Z=k]) = \mathbb{E}(f_k(Y))$$

Dans la démonstration de cette question, on étudie seulement le cas où $k \in \mathbb{N}^*$. On agit en ce sens car l'énonce demande de démontrer que Z suit la loi $\mathcal{G}(p)$. Il s'agit donc de déterminer $\mathbb{P}([Z=k])$ pour $k \in \mathbb{N}^*$.

• Rien n'empêche d'utiliser la formule (1) pour déterminer $\mathbb{P}([Z=0])$. On obtient alors :

$$\mathbb{P}\big(\left[Z=0\right]\big) = \sum_{n=1}^{+\infty} \mathbb{P}\big(\left[X_n=0\right]\big) \,\mathbb{P}\big(\left[Y=n\right]\big) = 0 \quad (car: \forall n \in \mathbb{N}^*, \,\mathbb{P}\big(\left[X_n=0\right]\big) = 0)$$

- 3. On suppose que pour tout $t \in J$, $\mathbb{E}(X_t)$ existe. On note g(t) cette espérance et on suppose que $\mathbb{E}(g(Y))$ existe.
 - a) Démontrer :

$$\mathbb{E}(g(Y)) = \sum_{y \in Y(\Omega)} \left(\sum_{k=0}^{+\infty} k f_k(y) \, \mathbb{P}([Y=y]) \right)$$

Démonstration.

• On suppose que $\mathbb{E}(g(Y))$ existe. D'après le théorème de transfert, on a alors :

$$\begin{split} \mathbb{E} \big(g(Y) \big) &= \sum_{y \in Y(\Omega)} g(y) \, \, \mathbb{P} \big(\, [Y = y] \, \big) \\ &= \sum_{y \in Y(\Omega)} \, \mathbb{E} (X_y) \, \, \mathbb{P} \big(\, [Y = y] \, \big) & (par \ d\'efinition \ de \ g) \\ &= \sum_{y \in Y(\Omega)} \, \left(\sum_{k=0}^{+\infty} k \, \, \mathbb{P} \big(\, [X_y = k] \, \big) \right) \mathbb{P} \big(\, [Y = y] \, \big) & (par \ d\'efinition, \ sous \ l'hypoth\`ese \ d'existence \ de \ \mathbb{E} (X_y)) \end{split}$$

• Finalement :

$$\mathbb{E}(g(Y)) = \sum_{y \in Y(\Omega)} \left(\sum_{k=0}^{+\infty} k \ f_k(y) \right) \, \mathbb{P}([Y = y]) \qquad (par \ définition \ de \ f_k)$$

$$= \sum_{y \in Y(\Omega)} \left(\sum_{k=0}^{+\infty} k \ f_k(y) \, \mathbb{P}([Y = y]) \right)$$

$$\text{Ainsi} : \mathbb{E}(g(Y)) = \sum_{y \in Y(\Omega)} \left(\sum_{k=0}^{+\infty} k \ f_k(y) \, \mathbb{P}([Y = y]) \right).$$

b) En admettant que l'on peut inverser l'ordre des sommes, montrer que $\mathbb{E}(Z)$ existe et :

$$\mathbb{E}(Z) = \mathbb{E}(g(Y)) \qquad (2)$$

Démonstration.

• D'après la question précédente :

$$\mathbb{E}(g(Y)) = \sum_{y \in Y(\Omega)} \left(\sum_{k=0}^{+\infty} k \ f_k(y) \ \mathbb{P}([Y = y]) \right)$$

$$= \sum_{k=0}^{+\infty} \left(\sum_{y \in Y(\Omega)} k \ f_k(y) \ \mathbb{P}([Y = y]) \right) \qquad (en \ admettant \ que \ l'on \ peut \ inverser \ l'ordre \ des \ sommes)$$

$$= \sum_{k=0}^{+\infty} k \left(\sum_{y \in Y(\Omega)} f_k(y) \ \mathbb{P}([Y = y]) \right) \qquad (par \ le \ th\'eor\`eme \ de \ transfert \ et \ car \ d'apr\`es \ la \ question \ 2.b), \ f_k(Y) \ admet \ une \ esp\'erance)$$

$$= \sum_{k=0}^{+\infty} k \ \mathbb{P}([Z = k])$$

• La v.a.r. Z admet une espérance si et seulement si la série $\sum_{k\in\mathbb{N}} k \mathbb{P}([Z=k])$ est absolument convergente. Cela revient à démontrer la convergence car cette série est à termes positifs. Le point précédent démontre que cette série est convergente et que sa somme n'est autre que la quantité $\mathbb{E}(g(Y))$.

En admettant que la v.a.r. g(Y) et les v.a.r. de la famille $(X_t)_{t\in J}$ admettent toute une espérance, on démontre, sous l'hypothèse d'inversion des sommes, que Z admet une espérance. Dans ce cas, on sait de plus : $\mathbb{E}(Z) = \mathbb{E}(g(Y))$.

Commentaire

- Il faut bien comprendre la nature de la démonstration. Le but étant de démontrer que la v.a.r. Z admet une espérance, on ne peut en aucun cas débuter par écrire « $\mathbb{E}(Z) = \dots$ ». C'est un tout autre raisonnement qui est effectué ici : on part de la somme d'une série qu'on sait convergente (hypothèse de l'énoncé) et on démontre que cette somme n'est autre que la somme de la série $\sum_{k\in\mathbb{N}} k \, \mathbb{P}\big([Z=k]\big)$. Cela démontre que cette dernière série est convergente et donc que Z admet une espérance.
- En question 2.b), on demande de démontrer : $\mathbb{P}([Z=k]) = \mathbb{E}(f_k(Y))$ sans préciser que l'on doit démontrer que la v.a.r. $f_k(Y)$ admet une espérance. En question 3.b), l'existence de l'espérance de la v.a.r. Z est en revanche explicitement demandée. On peut s'interroger sur la différence de formulation de ces deux questions. C'est d'autant plus surprenant que la manière de procéder est relativement similaire.

• On admet que les résultats établis dans les questions 2. et 3., en particulier (1) et (2), sont encore vrais lorsque Y n'est plus discrète.

- 4. Un premier exemple. On suppose que J =]0,1[, que la loi de X_t est la loi géométrique de paramètre t et que Y suit la loi uniforme sur]0,1[.
 - a) Montrer que pour tout $k \in \mathbb{N}^*$, $\mathbb{P}([Z=k]) = \frac{1}{k(k+1)}$. La variable aléatoire Z admet-elle une espérance?

Démonstration.

• Comme $Y \hookrightarrow \mathcal{U}(]0,1[)$, on peut considérer : $Y(\Omega) =]0,1[= J$. Par ailleurs, par définition de la famille $(X_t)_{t\in [0,1[}$, pour tout $k \in \mathbb{N}^*$:

$$f_k$$
: $]0,1[\rightarrow \mathbb{R}$
 $t \mapsto \mathbb{P}([X_t = k]) = t(1-t)^{k-1}$

- Remarquons que :
 - \times la fonction f_Y est nulle en dehors de [0,1].
 - \times la fonction f_k est continue sur]0,1[en tant que fonction polynomiale.

Ainsi, d'après le théorème de transfert, la v.a.r. $f_k(Y)$ admet une espérance si et seulement si l'intégrale $\int_0^1 f_k(t) f_Y(t) dt$ est absolument convergente.

Cela revient à démontrer la convergence car l'intégrande est positif.

De plus, comme $Y \hookrightarrow \mathcal{U}(]0,1[)$, pour tout $t \in]0,1[$, $f_Y(t) = 1$ et :

$$f_k(t) f_Y(t) = t (1-t)^{k-1}$$

L'intégrale $\int_0^1 f_k(t) f_Y(t) dt$ est bien définie car la fonction $t \mapsto t (1-t)^{k-1}$ est continue sur le SEGMENT [0,1].

• On peut alors appliquer alors la question 2.b) étendue au cas des v.a.r. non discrètes. En particulier, pour tout $k \in \mathbb{N}^*$:

$$\mathbb{P}([Z=k]) = \mathbb{E}(f_k(Y)) = \int_0^1 f_k(t) f_Y(t) dt = \int_0^1 t (1-t)^{k-1} dt$$

On procède alors par intégrations par parties (IPP).

Cette IPP est valide car les fonctions u et v sont de classe \mathcal{C}^1 sur le SEGMENT [0,1]. On obtient :

$$\int_0^1 t (1-t)^{k-1} dt = \left[t \frac{(1-t)^k}{k} \right]_0^1 + \int_0^1 \frac{(1-t)^k}{k} dt$$

$$= \frac{1}{k} \underbrace{(1 \times (1-1)^k - 0 \times (1-0)^k)}_{0} + \frac{1}{k} \int_0^1 (1-t)^k dt$$

$$= \frac{1}{k} \left[-\frac{(1-t)^{k+1}}{k+1} \right]_0^1$$

$$= \frac{1}{k} \frac{1}{k+1} \left(-\left((1-1)^{k+1} - (1-0)^{k+1} \right) \right) = \frac{1}{k(k+1)}$$

Finalement : $\forall k \in \mathbb{N}^*$, $\mathbb{P}([Z=k]) = \frac{1}{k(k+1)}$.

• La v.a.r. Z admet une espérance si et seulement si la série $\sum_{k \in \mathbb{N}^*} k \mathbb{P}([Z=k])$ est absolument convergente. Cela revient à démontrer la convergence car cette série est à termes positifs.

• Or, pour tout $k \in \mathbb{N}^*$:

$$k \mathbb{P}([Z=k]) = \cancel{k} \frac{1}{\cancel{k}(k+1)} = \frac{1}{k+1}$$

Ainsi, pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} k \, \mathbb{P}([Z=k]) = \sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k} = \left(\sum_{k=1}^{n+1} \frac{1}{k}\right) - 1$$

On reconnaît la somme partielle d'ordre n+1 de la série $\sum_{k\in\mathbb{N}^*}\frac{1}{k}$.

Cette série étant divergente, il en est de même de la série $\sum_{k\in\mathbb{N}^*} k \, \mathbb{P}\big([Z=k]\big)$.

La v.a.r. Z n'admet donc pas d'espérance.

Commentaire

Lorsqu'un résultat à démontrer est formulé sous forme d'interrogation (et pas d'affirmation comme c'est le cas en général), on pensera dans une majorité de cas à une probable réponse négative. À titre d'illustration, lorsqu'on rencontre les questions :

- $\bullet\,$ « L'ensemble F est-il un sous-espace vectoriel de E ? »
- « Les v.a.r. X et Y sont-elles indépendantes? »
- $\bullet\,$ « La v.a.r. X admet-elle une espérance / variance? »
- « La matrice A est-elle diagonalisable? »
- « La suite (u_n) est-elle majorée? »

la réponse est généralement : NON (à justifier évidemment).

b) Que vaut $\mathbb{E}(X_t)$ en fonction de t? Si l'on note g cette fonction de t, que peut-on dire de $\mathbb{E}(g(Y))$?

 $D\'{e}monstration.$

Soit $t \in]0,1[$.

• D'après l'énoncé, $X_t \hookrightarrow \mathcal{G}(t)$. On en déduit que X_t admet une espérance et :

$$\mathbb{E}(X_t) = \frac{1}{t}$$

- Remarquons que :
 - \times la fonction f_Y est nulle en dehors de [0,1].
 - \times la fonction g est continue sur]0,1[.

Ainsi, d'après le théorème de transfert, la v.a.r. g(Y) admet une espérance si et seulement si l'intégrale $\int_0^1 g(t) f_Y(t) dt$ est absolument convergente.

Cela revient à démontrer la convergence car l'intégrande est positif.

De plus, comme $Y \hookrightarrow \mathcal{U}(]0,1[)$, pour tout $t \in]0,1[$, $f_Y(t)=1$ et :

$$g(t) f_Y(t) = \frac{1}{t}$$

• L'intégrale $\int_0^1 g(t) f_Y(t) dt$ est divergente en tant qu'intégrale de Riemann, impropre en 0 et d'exposant $1 (\not< 1)$.

Ainsi, la v.a.r. g(Y) n'admet pas d'espérance.

Commentaire

- La formulation de la question est piégeuse. On demande de dire des choses sur $\mathbb{E}(g(Y))$ alors que cet objet n'existe pas. Il aurait été préférable d'opter pour la formulation de la question précédente, à savoir : « La v.a.r. g(Y) admet-elle une espérance? ».
- Il est à noter que cette question est en accord avec le résultat (2) de l'énoncé qui stipule, dans le cas où Y est une v.a.r. discrète (et sous un certain nombre d'autres hypothèses formulées par l'énoncé) :

$$\mathbb{E}(Z) = \mathbb{E}(g(Y))$$

Il est précisé dans l'énoncé que ce résultat est encore vérifié dans le cas où Y n'est plus une v.a.r. discrète. Si la v.a.r. g(Y) admettait une espérance, le résultat (2) permettrait de démontrer que Z admet une espérance, ce qui est exclu d'après la question précédente. \Box

5. Un deuxième exemple. On suppose que $J = [0, +\infty[$, que la loi de X_t est la loi de Poisson de paramètre t et que Y suit la loi exponentielle de paramètre $\lambda > 0$. Par suite, Z suit la loi $\mathcal{P}(Y)$.

Par convention, la loi de Poisson de paramètre 0 est la loi de la variable aléatoire nulle.

a) Démontrer, pour tout $k \in \mathbb{N}$:

$$\mathbb{P}([Z=k]) = \int_0^{+\infty} \frac{t^k}{k!} \lambda e^{-(\lambda+1)t} dt = \frac{\lambda}{(\lambda+1)^{k+1}} \int_0^{+\infty} \frac{x^k}{k!} e^{-x} dx$$

Démonstration.

• Comme $Y \hookrightarrow \mathcal{E}(\lambda)$, on peut considérer : $Y(\Omega) = [0, +\infty[= J.$ Par ailleurs, par définition de la famille $(X_t)_{t \in [0, +\infty[}$, pour tout $k \in \mathbb{N}$:

$$f_k$$
: $[0, +\infty[\rightarrow \mathbb{R}$

$$t \mapsto \mathbb{P}([X_t = k]) = e^{-t} \frac{t^k}{k!}$$

- Remarquons que :
 - × la fonction f_Y est nulle en dehors de $[0, +\infty[$,
 - × la fonction f_k est continue sur $]0,+\infty[$ en tant que produit de fonctions continues sur cet intervalle.

Ainsi, d'après le théorème de transfert, la v.a.r. $f_k(Y)$ admet une espérance si et seulement si l'intégrale $\int_0^{+\infty} f_k(t) f_Y(t) dt$ est absolument convergente.

Cela revient à démontrer la convergence car l'intégrande est positif.

De plus, comme $Y \hookrightarrow \mathcal{E}(\lambda)$, pour tout $t \in [0, +\infty[, f_Y(t) = \lambda e^{-\lambda t}]$ et :

$$f_k(t) f_Y(t) = e^{-t} \frac{t^k}{k!} \times \lambda e^{-\lambda t} = \frac{t^k}{k!} \lambda e^{-(\lambda+1)t}$$

La fonction $t \mapsto f_k(t)$ $f_Y(t)$ est continue par morceaux sur $[0, +\infty[$.

Ainsi, l'intégrale $\int_0^{+\infty} f_k(t) \ f_Y(t) \ dt$ est impropre seulement en $+\infty$.

• Démontrons alors la convergence de l'intégrale impropre $\int_0^{+\infty} \frac{t^k}{k!} \lambda e^{-(\lambda+1)t} dt$.

- Tout d'abord, comme la fonction $t\mapsto \frac{t^k}{k!}\;\lambda\,\mathrm{e}^{-(\lambda+1)\,t}$ est continue sur le SEGMENT [0,1],l'intégrale $\int_0^1 \frac{t^k}{k!} \lambda e^{-(\lambda+1)t} dt$ est bien définie.

$$\times \forall t \in [1, +\infty[, \frac{t^k}{k!} \lambda e^{-(\lambda+1)t}] \ge 0 \quad \text{et} \quad \frac{1}{t^2} \ge 0,$$

$$\times \frac{t^k}{k!} \lambda e^{-(\lambda+1)t} = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right)$$

En effet :
$$\frac{\frac{t^k}{k!} \lambda e^{-(\lambda+1)t}}{\frac{1}{t^2}} = \frac{\lambda}{k!} \frac{t^{k+2}}{e^{(\lambda+1)t}} \xrightarrow[t \to +\infty]{} 0 \quad (par\ croissances\ comparées)$$

 $\times \int_{1}^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann, impropre en $+\infty$, d'exposant 2 > 1.

C'est donc une intégrale convergente.

Par critère de négligeabilité des intégrales généralisées de fonctions continues positives, l'intégrale $\int_{1}^{+\infty} \frac{t^{k}}{k!} \lambda e^{-(\lambda+1)t} dt$ est convergente.

On en conclut que l'intégrale $\int_0^{+\infty} f_k(t) f_Y(t) dt$ est convergente.

• On peut alors appliquer la question 2.b) étendue au cas des v.a.r. non discrètes. En particulier, pour tout $k \in \mathbb{N}$:

$$\mathbb{P}([Z=k]) = \mathbb{E}(f_k(Y))$$

$$= \int_0^{+\infty} f_k(t) f_Y(t) dt = \int_0^{+\infty} \frac{t^k}{k!} \lambda e^{-(\lambda+1)t} dt$$

On effectue alors le changement de variable $x = (\lambda + 1) t$

$$x = (\lambda + 1) t \quad \left(\text{donc } t = \frac{1}{\lambda + 1} x\right)$$

$$\Rightarrow dx = (\lambda + 1) dt \quad \text{et} \quad dt = \frac{1}{\lambda + 1} dx$$

$$\bullet t = 0 \Rightarrow x = 0$$

$$\bullet t = +\infty \Rightarrow x = +\infty$$

•
$$t = 0 \Rightarrow x = 0$$

•
$$t = +\infty \implies x = +\infty$$

Ce changement de variable est valide car $\psi: x \mapsto \frac{1}{\lambda+1} x$ est de classe \mathcal{C}^1 sur $[0, +\infty[$.

On obtient:

$$\int_0^{+\infty} \frac{t^k}{k!} \, \lambda \, e^{-(\lambda+1)t} \, dt = \int_0^{+\infty} \frac{\left(\frac{1}{\lambda+1} \, x\right)^k}{k!} \, \lambda \, e^{-x} \frac{dx}{\lambda+1} = \frac{\lambda}{(\lambda+1)^{k+1}} \int_0^{+\infty} \frac{x^k}{k!} \, e^{-x} \, dx$$

Finalement:
$$\forall k \in \mathbb{N}, \mathbb{P}([Z=k]) = \mathbb{E}(f_k(Y)) = \frac{\lambda}{(\lambda+1)^{k+1}} \int_0^{+\infty} \frac{x^k}{k!} e^{-x} dx.$$

Commentaire

• Le programme officiel précise que « les changements de variables **non affines** ne seront pratiqués qu'avec des intégrales sur un segment ». Il est donc autorisé, sous réserve de convergence, d'effectuer un changement de variable affine sur une intégrale généralisée (ce qui est fait dans cette question).

- La fonction intégrande $h: t \mapsto \frac{t^k}{k!} \lambda e^{-(\lambda+1)t}$:
 - \times n'admet pas d'équivalent plus simple en $+\infty$,
 - \times tend très rapidement vers 0 en $+\infty$.

Du fait de ces deux points, on opte dans la démonstration pour un critère de négligeabilité. De manière informelle, la présence du terme $e^{-(\lambda+1)\,t}$ produit une convergence extrêmement rapide de h vers 0 en $+\infty$. L'intégrande h apparaît donc suffisamment petit en $+\infty$ pour que l'intégrale sur $[1, +\infty[$ associée soit convergente. Formellement, cette idée est concrétisée en comparant h à l'intégrande $t\mapsto \frac{1}{t^2}$, positif et dont l'intégrale sur $[1, +\infty[$ est convergente.

- La démonstration de la propriété $\frac{t^k}{k!}$ $\lambda e^{-(\lambda+1)\,t} = \underset{t\to+\infty}{o} \left(\frac{1}{t^2}\right)$ n'est pas forcément un attendu de la question. Prendre l'initiative de la comparaison à la fonction $t\mapsto \frac{1}{t^2}$ démontre la bonne compréhension des mécanismes en jeu et permet certainement d'obtenir tous les points.
- Il était aussi possible de remarquer : $\frac{t^k}{k!} \lambda e^{-(\lambda+1)t} = o_{t\to+\infty}(e^{-t})$ (*).

En effet : $\frac{t^k}{\frac{k!}{k!}} \frac{\lambda \operatorname{e}^{-(\lambda+1)\,t}}{\operatorname{e}^{-t}} \; = \; \frac{t^k}{k!} \; \lambda \operatorname{e}^{-\lambda\,t} \; = \; \frac{\lambda}{k!} \; \underset{t \to +\infty}{\underbrace{t^k}} \; 0 \; \operatorname{par \; croissances \; compar\'es}.$

Or, l'intégrale $\int_0^{+\infty} e^{-t} dt$ est convergente (en tant que moment d'ordre 0 d'une variable aléatoire de loi $\mathcal{E}(1)$). On peut donc établir la convergence de l'intégrale $\int_0^{+\infty} f_k(t) f_Y(t) dt$

via l'égalité (*) et le critère de négligeabilité des intégrales généralisées de fonctions continues positives. L'intérêt d'utiliser la comparaison (*) est que la rédaction s'en trouve simplifiée puisqu'on peut faire l'étude directement avec l'intégrale sur $[0, +\infty[$.

- De manière générale, lorsque l'intégrande présente un terme de la forme « $e^{-g(t)}$ », il peut être intéressant de penser à utiliser la méthode évoquée dans le point précédent (comparaison à une intégrande de la forme $t\mapsto e^{-\alpha\,t}$ où $\alpha>0$ est un réel correctement choisi). On peut d'ailleurs procéder ainsi pour démontrer :
 - × qu'une v.a.r. qui suit la loi $\mathcal{E}(\lambda)$ (avec $\lambda > 0$) admet des moments à tous les ordres. Plus précisément, on peut faire une comparaison à l'intégrande $t \mapsto e^{-\frac{\lambda}{2}t}$.
 - × qu'une v.a.r. qui suit une loi normale admet des moments à tous les ordres. Plus précisément, on peut faire une comparaison à l'intégrande $t \mapsto e^{-t}$.

Ces deux points ne sont pas officiellement au programme et ne peuvent donc, a priori, être utilisés sans en faire la démonstration. On peut au passage remarquer que la question $\boldsymbol{5}$ traite précisément du moment d'ordre k des v.a.r. de loi exponentielle :

- en question 5.a) on fait apparaître, à une constante multiplicative près, le moment d'ordre k d'une v.a.r. de loi $\mathcal{E}(\lambda+1)$. Un des objectifs de la question est de l'écrire à l'aide du moment d'ordre k d'une v.a.r. de loi $\mathcal{E}(1)$.
- en question 5.b) on calcule ce moment.

15

b) En raisonnant par récurrence sur $k \in \mathbb{N}$, justifier que pour tout $k \in \mathbb{N}$:

$$\int_0^{+\infty} \frac{x^k}{k!} e^{-x} dx = 1$$

Démonstration.

Démontrons par récurrence : $\forall k \in \mathbb{N}, \mathcal{P}(k)$ où $\mathcal{P}(k) : \int_0^{+\infty} \frac{x^k}{k!} e^{-x} dx = 1.$

▶ Initialisation :

Il suffit de remarquer :

$$\int_0^{+\infty} \frac{x^0}{0!} e^{-x} dx = \int_0^{+\infty} e^{-x} dx = \frac{1}{1} = 1$$

On reconnaît en effet le moment d'ordre 0 d'une v.a.r. de loi \mathcal{E} (1).

▶ **Hérédité** : soit $k \in \mathbb{N}$.

Supposons $\mathcal{P}(k)$ et démontrons $\mathcal{P}(k+1)$ (c'est-à-dire : $\int_0^{+\infty} \frac{x^{k+1}}{(k+1)!} e^{-x} dx = 1$).

Pour ce faire, on procède par intégration par parties (IPP). Soit $B \in [0, +\infty[$.

Cette IPP est valide car les fonctions u et v sont de classe C^1 sur [0, B]. On obtient :

$$\int_{0}^{B} \frac{x^{k+1}}{(k+1)!} e^{-x} dx = \left[-\frac{x^{k+1}}{(k+1)!} e^{-x} \right]_{0}^{B} + \int_{0}^{B} \frac{x^{k}}{k!} e^{-x} dx$$

$$= -\frac{1}{(k+1)!} \left[x^{k+1} e^{-x} \right]_{0}^{B} + \int_{0}^{B} \frac{x^{k}}{k!} e^{-x} dx$$

$$= -\frac{1}{(k+1)!} \left(B^{k+1} e^{-B} - 0^{k+1} e^{-0} \right) + \int_{0}^{B} \frac{x^{k}}{k!} e^{-x} dx$$

$$= -\frac{1}{(k+1)!} \frac{B^{k+1}}{e^{B}} + \int_{0}^{B} \frac{x^{k}}{k!} e^{-x} dx$$

$$\xrightarrow{B \to +\infty} 0 + \int_{0}^{+\infty} \frac{x^{k}}{k!} e^{-x} dx$$

Cette limite est obtenue par croissances comparées et car l'intégrale $\int_0^{+\infty} \frac{x^k}{k!} e^{-x} dx$ est convergente. Finalement :

$$\int_0^{+\infty} \frac{x^{k+1}}{(k+1)!} e^{-x} dx = \int_0^{+\infty} \frac{x^{k+1}}{(k+1)!} e^{-x} dx = 1 \quad (par \; hypoth\`ese \; de \; r\'ecurrence)$$
 D'où $\mathcal{P}(k+1)$.

Par principe de récurrence : $\forall k \in \mathbb{N}, \mathcal{P}(k)$.

Commentaire

• Dans cette question, on démontre, que pour tout $k \in \mathbb{N}$:

$$\int_0^{+\infty} x^k e^{-x} dx = k!$$

Formulé autrement, on vient de démontrer qu'une v.a.r. X de loi $\mathcal{E}(1)$ admet un moment à tout ordre $k \in \mathbb{N}$ (c'était une partie de l'objectif de la question précédente) et :

$$\mathbb{E}\left(X^k\right) = k!$$

• En agissant comme en question 5.a), on pouvait aussi démontrer :

$$\int_0^{+\infty} t^k \, \lambda e^{-\lambda t} \, dt = \frac{1}{\lambda^k} \int_0^{+\infty} x^k e^{-x} \, dx = \frac{k!}{\lambda^k}$$

Cela signifie qu'une v.a.r. Y de loi $\mathcal{E}(\lambda)$ admet un moment à tout ordre $k \in \mathbb{N}$ et :

$$\mathbb{E}\left(Y^k\right) = \frac{k!}{\lambda^k}$$

c) Déterminer la loi de Z. Reconnaître la loi de Z+1.

 $D\'{e}monstration.$

Soit $k \in \mathbb{N}$.

• Tout d'abord :

$$\mathbb{P}([Z=k]) = \frac{\lambda}{(\lambda+1)^{k+1}} \int_0^{+\infty} \frac{x^k}{k!} e^{-x} dx \qquad (d'après \ la \ question \ \mathbf{5.a}))$$

$$= \frac{\lambda}{(\lambda+1)^{k+1}} \times 1 \qquad (d'après \ la \ question \ \mathbf{5.b}))$$

$$= \lambda \left(\frac{1}{\lambda+1}\right)^{k+1}$$

$$= \left(\frac{\lambda}{\lambda+1}\right) \left(\frac{1}{\lambda+1}\right)^k$$

$$= \left(\frac{\lambda}{\lambda+1}\right) \left(1 - \frac{\lambda}{\lambda+1}\right)^k$$

• Comme $Z(\Omega)=\mathbb{N},$ alors $(Z+1)(\Omega)=\mathbb{N}^*.$ On en déduit, pour tout $i\in\mathbb{N}^*$:

$$\begin{split} \mathbb{P}\big(\left[Z+1=i\right]\big) &= \mathbb{P}\big(\left[Z=i-1\right]\big) \\ &= \left(\frac{\lambda}{\lambda+1}\right) \left(1-\frac{\lambda}{\lambda+1}\right)^{i-1} \quad (en\ utilisant\ la\ relation \\ précédente\ en\ k=i-1\in\mathbb{N}^*) \end{split}$$
 On en déduit : $Z+1\hookrightarrow\mathcal{G}\left(\frac{\lambda}{\lambda+1}\right)$.

17

d) En déduire $\mathbb{E}(Z)$. Ce résultat est-il cohérent avec l'égalité (2)?

Démonstration.

• Remarquons tout d'abord :

$$Z = (Z+1)-1$$

Ainsi, Z admet une espérance en tant que transformée affine de la v.a.r. Z+1 qui admet elle-même une espérance car elle suit la loi $\mathcal{G}\left(\frac{\lambda}{\lambda+1}\right)$.

• De plus :

$$\mathbb{E}(Z) = \mathbb{E}((Z+1)-1)$$

$$= \mathbb{E}(Z+1) - \mathbb{E}(1) \quad (par \, linéarité \, de \, l'espérance)$$

$$= \frac{1}{\frac{\lambda}{\lambda+1}} - 1 \qquad (car \, Z+1 \hookrightarrow \mathcal{G}\left(\frac{\lambda}{\lambda+1}\right))$$

$$= \frac{\lambda+1}{\lambda} - 1$$

$$= \frac{1}{\lambda}$$

Ainsi :
$$\mathbb{E}(Z) = \frac{1}{\lambda}$$
.

• Soit $t \in [0, +\infty[$. D'après l'énoncé, $X_t \hookrightarrow \mathcal{P}(t)$. On en déduit que X_t admet une espérance et :

$$\mathbb{E}(X_t) = t$$

Ainsi, $g: t \mapsto t$ et g(Y) = Y.

• Comme $Y \hookrightarrow \mathcal{E}(\lambda)$, alors Y admet une espérance. De plus :

$$\mathbb{E}(Y) = \frac{1}{\lambda}$$

Finalement, on retrouve bien le résultat (2), à savoir : $\mathbb{E}(Z) = \frac{1}{\lambda} = \mathbb{E}(g(Y))$.

<u>Commentaire</u>

Dans cette partie, la notion de lois composées a été introduite et illustrée au travers de nombreux exemples. En particulier, ont été étudiés les cas où :

- \times Y est une v.a.r. discrète (questions 2. et 3.),
- \times Y est une v.a.r. à densité (questions 4. et 5.).

L'étude a été faite de manière théorique en questions 2.a), 2.b), 3.a) et 3.b) mais aussi au travers d'exemples pour ce qui est des autres questions. Ces dernières permettent de bien évaluer la connaissance des lois usuelles par les candidats. Cette première partie est bien construite et l'étude de la notion de lois composées, hors programme, est réalisée en restant toujours dans le cadre du programme. La donnée des résultats intermédiaires ainsi que le découpage en sous-questions rend les questions accessibles (même aux candidats n'ayant pas finement compris la notion de lois composées) et permet d'éviter la présence de questions bloquantes. On retiendra au passage que les questions d'un énoncé ne sont pas forcément rangées dans un ordre croissant de difficulté. Il ne faut donc pas se décourager si on ne sait pas traiter une ou plusieurs questions d'affilée. Il faut au contraire s'accrocher : des questions plus simples apparaîtront et ce même dans les énoncés du TOP3.

Partie 2 - Le modèle de Cori

On considère une population d'effectif infini dans laquelle un individu donné est infecté le jour 0 par un virus contagieux.

Soit $d \in \mathbb{N}^*$. On suppose que :

- × tout individu infecté par le virus est immédiatement contagieux et sa contagiosité ne dure que (d+1) jours, du jour n où il est infecté jusqu'au jour (n+d) $(n \in \mathbb{N})$;
- × une fois infectés, les individus présentent un même profil de contagiosité donné par un (d+1)-uplet $(\alpha_0, \alpha_1, \dots, \alpha_d)$ qui dépend généralement de facteurs biologiques.

Pour tout $k \in [0, d]$, on dit que α_k est la contagiosité de tout individu ayant éte infecté k jours plus tôt. Autrement dit, on peut considérer que α_k , lié à la nature du virus, détermine la proportion d'individus contaminés par un individu infecté, parmi tous ceux avec lesquels il est en contact k jours après sa contamination.

Finalement, les réels $\alpha_0, \alpha_1, \ldots, \alpha_d$ sont tels que, pour tout $k \in [0, d], \alpha_k \in]0, 1[$ et on note $\alpha = \sum_{k=0}^d \alpha_k$, ce qui signifie que α est la contagiosité globale d'un individu infecté sur toute la période où il est infecté. On utilise les notations et définitions de la **Partie 1** avec $J = \mathbb{R}_+$.

On suppose que les variables aléatoires qui interviennent par la suite sont définies sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$.

- Pour tout $n \in \mathbb{N}$, on note R_n la variable aléatoire qui désigne le nombre moyen de contacts réalisés le jour n par un individu contagieux ce jour-là. On suppose, pour tout $n \in \mathbb{N}$, l'existence de $\mathbb{E}(R_n)$ et on pose $r_n = \mathbb{E}(R_n)$.
- Pour tout $n \in \mathbb{N}$, on note Z_n la variable aléatoire égale au nombre total d'individus qui sont infectés et donc deviennent contagieux le n-ième jour. Par exemple, $Z_0 = 1$.
- Pour tout $n \in \mathbb{N}$, on note I_n la variable aléatoire égale à la contagiosité globale de la population le n-ième jour, définie par :

$$I_n = \sum_{k=0}^{\min(n,d)} \alpha_k Z_{n-k}$$
 (*)

• On suppose enfin que, pour tout $n \in \mathbb{N}$, I_n et R_n sont indépendantes et que si l'on pose $Y_n = R_n I_n$, on a :

$$Z_{n+1}$$
 suit la loi $\mathcal{P}(Y_n)$

où \mathcal{P} désigne la loi de Poisson. Ainsi la loi de Z_{n+1} ne dépend que des lois de R_n et de I_n .

6. Donner une justification de (*).

Démonstration.

• La contagiosité globale α d'un individu infecté est, par définition, la somme des coefficients du profil de contagiosité. Plus précisément :

$$\alpha = \sum_{k=0}^{d} \alpha_k$$

• Au vu de la définition de α , on peut imaginer définir la contagiosité globale de la population le $n^{\text{ème}}$ jour comme la somme des contagiosités de tous les individus de la population qui sont encore contagieux ce jour-là.

- Pour plus de simplicité, considérons tout d'abord le cas où $n \ge d$. Parmi les individus contagieux le jour n, il faut distinguer :
 - \times ceux nouvellement infectés le jour n et ont donc pour coefficient de contagiosité α_0 . La contagiosité de cette catégorie de la population est la somme de toutes les contagiosités des individus qui composent cette population. Cette catégorie comportant Z_n individus, tous de contagiosité α_0 , la contagiosité globale de cette catégorie est alors :

$$\alpha_0 \times Z_n$$

 \times ceux nouvellement infectés le jour n-1 et ont donc pour coefficient de contagiosité α_1 . Cette catégorie comportant Z_{n-1} individus, tous de contagiosité α_1 , la contagiosité globale de cette catégorie est alors :

$$\alpha_1 \times Z_{n-1}$$

× ...

 \times ceux nouvellement infectés le jour n-d (sous l'hypothèse : $n-d\geqslant 0$) et ont donc pour coefficient de contagiosité α_{n-d} .

Cette catégorie comportant Z_{n-d} individus, tous de contagiosité α_d , la contagiosité globale de cette catégorie est alors :

$$\alpha_d \times Z_{n-d}$$

Les individus infectés un jour qui précède le jour n-d ne sont plus contagieux et n'entrent donc pas dans la mesure de contagiosité.

Finalement, la contagiosité globale de la population le $n^{\text{ème}}$ jour, sous l'hypothèse

$$n \geqslant d \text{ est} : \alpha_0 \times Z_n + \alpha_1 \times Z_{n-1} + \ldots + \alpha_d \times Z_{n-d} = \sum_{k=0}^d \alpha_k \times Z_{n-k}.$$

- Dans le cas où n < d, les individus contagieux le jour n ont été infectés au pire n jours avant. La population d'infectés se divise dans ce cas en n+1 catégories (et pas d+1 catégories comme dans le cas précédent) :
 - \times ceux nouvellement infectés le jour n et qui ont pour coefficient de contagiosité α_0 . La contagiosité globale de cette catégorie est : $\alpha_0 \times Z_n$.
 - × ceux nouvellement infectés le jour n-1 et qui ont donc coefficient de contagiosité α_1 . La contagiosité globale de cette catégorie est alors : $\alpha_1 \times Z_{n-1}$.

× ...

 \times ceux nouvellement infectés le jour n-n=0 et ont donc pour coefficient de contagiosité α_n . La contagiosité globale de cette catégorie est alors : $\alpha_n \times Z_0$.

Comme il n'y a pas de jour précédant le jour 0, aucun individu n'a pu être infecté avant ce jour.

Finalement, la contagiosité globale de la population le $n^{\text{ème}}$ jour, sous l'hypothèse n < d est : $\alpha_0 \times Z_n + \alpha_1 \times Z_{n-1} + \ldots + \alpha_n \times Z_0 = \sum_{k=0}^n \alpha_k \times Z_{n-k}$.

Ainsi, la contagiosité globale de la population le
$$n^{\text{ème}}$$
 jour est : $\sum_{k=0}^{\min(n,d)} \alpha_k \times Z_{n-k}$.

Commentaire

• La notion de « contagiosité globale de la population » n'est pas développée dans l'énoncé et uniquement décrite par l'égalité (*). Dans cette question, on demande donc au candidat :

- × d'avoir l'intuition de ce que la notion de « contagiosité globale de la population » signifie,
- × de vérifier que cette intuition correspond à la définition mathématique donnée par l'énoncé.

On peut s'interroger sur la pertinence d'une telle démarche. Afin de pouvoir justifier la définition d'une v.a.r., encore faudrait-il savoir ce qu'elle est censée représenter. Dans ce cas précis, l'énoncé aurait pu définir la contagiosité globale de la population le $n^{\rm ème}$ jour comme la somme des contagiosités de tous les individus de la population encore contagieux ce jour-là. Cette définition étant absente, la fournir doit permettre d'obtenir la plupart des points alloués à cette question.

- Il est fortement conseillé de traiter ce type de questions consistant en une interprétation d'un résultat / d'une définition. Il s'agit de démontrer au correcteur une compréhension, même incomplète, de l'objet considéré. Comme il n'existe pas de réponse type, toute idée pertinente, même si peu rigoureuse, permettra d'obtenir des points.
- 7. a) Soit $n \in \mathbb{N}$. On suppose que $\mathbb{E}(I_n)$ existe. Montrer que $\mathbb{E}(Y_n)$ existe et en utilisant un résultat de la **Partie** 1, montrer que $\mathbb{E}(Z_{n+1})$ existe et vaut $r_n \mathbb{E}(I_n)$.

Démonstration.

• Tout d'abord, la v.a.r. $Y_n = R_n I_n$ admet une espérance comme produit de v.a.r. indépendantes qui admettent chacune une espérance. De plus :

$$\mathbb{E}(Y_n) = \mathbb{E}(R_n I_n) = \mathbb{E}(R_n) \times \mathbb{E}(I_n) = r_n \times \mathbb{E}(I_n)$$

- D'après l'énoncé, $Z_{n+1} \hookrightarrow \mathcal{P}(Y_n)$ et $J = [0, +\infty[$. Formellement, cela signifie qu'il existe un processus $(X_t)_{t \in [0, +\infty[}$ constitué de v.a.r. :
 - \times à valeurs dans \mathbb{N} ,
 - \times indépendantes de Y_n ,
 - \times et telles que pour tout $t \in [0, +\infty[: X_t \hookrightarrow \mathcal{P}(t)]$.

En particulier, pour tout $t \in [0, +\infty[$, X_t admet une espérance. De plus : $\mathbb{E}(X_t) = t$. Ainsi :

$$g : [0, +\infty[\rightarrow \mathbb{R}$$

$$t \mapsto t$$

• D'après le résultat (2) de la **Partie 1**, comme la v.a.r. $g(Y_n) = Y_n$ admet une espérance, il en est de même de Z_{n+1} et :

$$\mathbb{E}(Z_{n+1}) = \mathbb{E}(g(Y_n))$$

$$= \mathbb{E}(Y_n)$$

$$= r_n \mathbb{E}(I_n)$$

Pour tout $n \in \mathbb{N}$, Z_{n+1} admet une espérance et : $\mathbb{E}(Z_{n+1}) = r_n \mathbb{E}(I_n)$.

b) Montrer que pour tout $n \in \mathbb{N}$, $z_n = \mathbb{E}(Z_n)$ existe et vérifie la relation de récurrence :

$$z_{n+1} = r_n \sum_{k=0}^{\min(n,d)} \alpha_k z_{n-k}$$
 (3)

Démonstration.

• D'après la question précédente, pour tout $m \in \mathbb{N}$, Z_{m+1} admet une espérance. Cela démontre (en prenant n = m+1) que pour tout $n \in \mathbb{N}^*$, Z_n admet une espérance. De plus, d'après l'énoncé : $Z_0 = 1$.

On en conclut que pour tout $n \in \mathbb{N}$, Z_n admet une espérance.

• Soit $n \in \mathbb{N}$. Par définition :

$$I_n = \sum_{k=0}^{\min(n,d)} \alpha_k \ Z_{n-k}$$

Ainsi, I_n admet une espérance en tant que combinaison linéaire de v.a.r. qui admettent chacune une espérance.

De plus:

$$\mathbb{E}(Z_{n+1}) = r_n \, \mathbb{E}(I_n) \qquad \qquad (d'après \, la \\ question \, précédente)$$

$$= r_n \, \mathbb{E}\left(\sum_{k=0}^{\min(n,d)} \alpha_k \, Z_{n-k}\right)$$

$$= r_n \, \sum_{k=0}^{\min(n,d)} \alpha_k \, \mathbb{E}(Z_{n-k})$$

$$= r_n \, \sum_{k=0}^{\min(n,d)} \alpha_k \, z_{n-k} \qquad (par \, définition)$$

On a bien, pour tout
$$n \in \mathbb{N}$$
: $z_{n+1} = r_n \sum_{k=0}^{\min(n,d)} \alpha_k z_{n-k}$.

Commentaire

 Le définition de l'espérance d'un produit de v.a.r. est donné dans le chapitre « Couples de v.a.r. discrètes ». Si X et Y sont deux v.a.r. discrètes, il est précisé, « sous réserve de convergence absolue » :

$$\mathbb{E}(XY) = \sum_{x \in X(\Omega)} \left(\sum_{y \in Y(\Omega)} xy \, \mathbb{P}([X = x] \cap [Y = y]) \right)$$
$$= \sum_{y \in Y(\Omega)} \left(\sum_{x \in X(\Omega)} xy \, \mathbb{P}([X = x] \cap [Y = y]) \right)$$

La notion de convergence absolue est à préciser selon le caractère fini ou non des ensembles $X(\Omega)$ et $Y(\Omega)$. Plus précisément, dans le cas où ces deux ensembles sont finis, cette double somme existe et la réserve est directement levée. Dans le cas où (au moins) l'un des deux ensembles est infini, on est confronté à (au moins) une somme infinie et il convient de vérifier la convergence absolue de la série correspondante.

Commentaire

• De manière générale, le programme ne précise pas comment déterminer l'espérance du produit de deux v.a.r. quelconques. Il est toutefois précisé que si X et Y sont indépendantes et admettent une espérance alors, la v.a.r. produit XY admet une espérance donnée par :

$$\mathbb{E}(XY) = \mathbb{E}(X)\,\mathbb{E}(Y)$$

L'hypothèse d'indépendance est ici cruciale pour démontrer l'existence de l'espérance du produit et pour obtenir sa valeur. Insistons sur le fait que ce théorème peut être utilisé pour tout type de v.a.r. (discrètes / à densité / quelconques) et que X et Y n'ont pas à être de même type.

• Dans le cas général, on peut conclure que la v.a.r. produit XY admet une espérance si les v.a.r. X et Y admettent un moment d'ordre 2. On peut se demander d'où provient cette hypothèse liée aux moments d'ordre 2. Elle est issue d'un théorème de domination. Détaillons ce point.

Remarquons tout d'abord : $(X - Y)^2 \ge 0$.

On en déduit : $X^2 - 2XY + Y^2 \ge 0$. Et, en réordonnant : $XY \le \frac{1}{2}X^2 + \frac{1}{2}Y^2$.

De la même manière : $(X+Y)^2\geqslant 0$ donc : $-\frac{1}{2}\,X^2-\frac{1}{2}\,Y^2\leqslant XY$. Ainsi :

$$0 \leqslant |XY| \leqslant \frac{1}{2}X^2 + \frac{1}{2}Y^2$$

Comme X et Y admettent un moment d'ordre 2, la v.a.r. $\frac{1}{2}X^2 + \frac{1}{2}Y^2$ admet une espérance comme combinaison linéaire de v.a.r. qui en admettent une.

Ainsi, par théorème de domination (présenté seulement dans le programme ECS), la v.a.r. |XY| admet une espérance. Il en est alors de même de la v.a.r. XY.

8. Programmation de z_n avec Scilab.

On suppose que la suite $(r_n)_{n\in\mathbb{N}}$ vérifie, pour tout $n\in\mathbb{N}$, $r_n=\frac{n+2}{n+1}$.

On note Δ la matrice ligne $(\alpha_0 \cdots \alpha_d)$.

Écrire une fonction Scilab d'entête function r = z(Delta,n) qui calcule z_n si Delta représente la matrice ligne Δ .

 $D\'{e}monstration.$

• Voici le programme attendu.

```
function r = z(Delta, n)
Z = zeros(1, n+1)
Z(1) = 1
d = length(Delta) - 1
for i = 1:n
S = 0
for k = 0 : min(i-1,d)
S = S + Delta(k+1) * Z(i-k)
end
Z(i+1) = (i+1) / i * S
end
r = Z(n+1)
endfunction
```

• Avant de détailler les différents éléments de cette fonction, rappelons tout d'abord la définition de la suite (z_n) :

$$\begin{cases} z_0 = 1 \\ \forall n \in \mathbb{N}, \ z_{n+1} = \frac{n+2}{n+1} \sum_{k=0}^{\min(n,d)} \alpha_k \ z_{n-k} \end{cases}$$

• Début du programme

La suite (z_n) est une suite récurrente dont chaque terme dépend de tous les précédents. Pour calculer le terme d'indice n, il faut avoir accès aux termes d'indice $0, \ldots, n-1$ de la suite. D'un point de vue informatique, il est donc nécessaire de créer un vecteur Z permettant de stocker, au fur et à mesure du calcul, toutes ces valeurs. Il est à noter que, pour tout $i \in \mathbb{N}$, le terme z_i est le $(i+1)^{\text{ème}}$ terme de la suite (z_n) et sera donc stockée en $(i+1)^{\text{ème}}$ position dans Z. En particulier, Z doit être de taille n+1 pour contenir z_0, \ldots, z_n .

$$\underline{2}$$
 Z = zeros(1, \mathbf{n} +1)

On commence alors par stocker le terme z_0 en première case de Z.

$$\underline{3}$$
 Z(1) = 1

On récupère aussi la valeur de d, et on la stocke dans une variable informatique d en exploitant le fait que la matrice Δ est de longueur d+1.

$$\underline{a}$$
 d = length(Delta) - 1

• Structure itérative

Notons que, comme l'indexation des matrices commence en 0, pour tout $i \in [1, n]$, l'élément z_i sera stocké en $(i+1)^{\text{ème}}$ case de Z. Plus précisément, rappelons la formule donnant la valeur de z_i ainsi que les cases dans lesquelles chacun des éléments est stocké :

$$\text{valeur}: \qquad z_i = \frac{i+1}{i} \sum_{k=0}^{\min(i-1,d)} \qquad \alpha_k \times z_{i-1-k}$$

$$\qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\text{stock\'ee dans la variable}: \ Z(i+1) \qquad \qquad \text{Delta(k+1)} \qquad Z(i-k)$$

Pour i variant de 1 à n, on va mettre à jour le contenu de Z(i+1) en accord avec la formule ci-dessus. Pour ce faire, on met en place une boucle sur i.

Par ailleurs, notons que z_i requiert le calcul de la somme $\sum_{k=0}^{\min(i-1,d)} \alpha_k \ z_{i-1-k}$, ce qui nécessite de réaliser une boucle sur une variable k variant de 0 à min(i-1, d) qui permet de mettre à jour une variable S (comme somme), initialisée à 0.

$$\begin{array}{lll} \underline{6} & & S = 0 \\ \underline{7} & & \text{for } k = 0 : \min(i-1,d) \\ \underline{8} & & S = S + \mathbf{Delta}(k+1) * Z(i-k) \\ \underline{9} & & \text{end} \end{array}$$

En sortie de cette boucle, la variable S contient la somme $\sum_{k=0}^{\min(i-1,d)} \alpha_k \ z_{i-1-k}.$

Il reste alors à stocker la valeur de z_i dans Z(i+1) comme annoncé plus haut. On complète alors le programme comme suit :

$$\underline{10} \qquad \qquad Z(i+1) = (i+1) / i \star S$$

• Fin de programme

Rappelons que le but du programme est de calculer z_n et que ce résultat, du fait de l'entête annoncé, doit être stocké dans la variable \mathbf{r} . On conclut donc le programme comme suit :

$$\frac{12}{\mathbf{r}} = \mathbf{Z(n+1)}$$

Commentaire

- Rappelons que fournir le programme, sans aucune explication, suffit à démontrer une bonne compréhension des mécanismes en jeu et permet d'obtenir tous les points alloués à cette question.
- Comme en question 1., on peut s'interroger sur la pertinence des choix effectués par le concepteur concernant :
 - × le nom de la fonction z. Ce nom ressemble beaucoup plus au nom d'une variable qu'à un nom de fonction. On aurait pu par exemple la nommer calculSuiteZ comme cela est fait dans les énoncés du TOP5.
 - × le nom de la variable de sortie r. On aurait pu nommer cette variable z (si la fonction ne s'était pas appelée ainsi . . .) ou tout simplement res comme « résultat » de la fonction.
- Afin de répondre à cette question, on pouvait aussi observer, en notant $N = \min(i-1,d)$:

$$z_i = \alpha_0 z_{i-1} + \ldots + \alpha_N z_{i-1-N} = \begin{pmatrix} \alpha_0 & \alpha_1 & \ldots & \alpha_N \end{pmatrix} \times \begin{pmatrix} z_{i-1} \\ z_{i-2} \\ \vdots \\ z_{i-1-N} \end{pmatrix}$$

On se sert alors des fonctionnalités **Scilab** sur les matrices afin de répondre à cette question. La matrice $(\alpha_0 \ \alpha_1 \ \dots \ \alpha_N)$ est obtenue à l'aide de l'appel : Delta(1:N+1).

La matrice $\begin{pmatrix} z_{i-1} \\ z_{i-2} \\ \vdots \\ z_{i-1-N} \end{pmatrix}$ est obtenue par l'instruction : (Z(i-N:-1:i))'.

(on rappelle que l'apostrophe permet d'obtenir la transposée d'une matrice) On obtient le programme suivant.

```
function res = calcSuiteZ(Delta, n)
d = length(Delta)
Z = zeros(1, n+1)
Z(1) = 1
for i = 1:n
N = min(i-1, d)
Z(i+1) = Delta(1:N+1) * (Z(i-N:-1:i))'
end
res = Z(n+1)
endfunction
```

9. Soient $(U_n)_{n\geqslant 0}$, $(V_n)_{n\geqslant 0}$, deux suites d'événements tels que $\lim_{n\to +\infty} \mathbb{P}(U_n) = \lim_{n\to +\infty} \mathbb{P}(V_n) = 1$. Montrer que $\lim_{n\to +\infty} \mathbb{P}(U_n\cap V_n) = 1$.

Démonstration.

• D'après la formule du crible :

$$\mathbb{P}(U_n \cup V_n) = \mathbb{P}(U_n) + \mathbb{P}(V_n) - \mathbb{P}(U_n \cap V_n) \tag{*}$$

• Par ailleurs:

$$U_n \subset U_n \cup V_n \subset \Omega$$

donc $\mathbb{P}(U_n) \leqslant \mathbb{P}(U_n \cup V_n) \leqslant \mathbb{P}(\Omega)$ (par croissance de l'application \mathbb{P})

Or:

$$\times \lim_{n \to +\infty} \mathbb{P}(U_n) = 1$$
 par hypothèse.

$$\times \lim_{n \to +\infty} \mathbb{P}(\Omega) = \lim_{n \to +\infty} 1 = 1.$$

Ainsi, par théorème d'encadrement, que la suite
$$\left(\mathbb{P}(U_n \cup V_n)\right)_{n \in \mathbb{N}}$$
 admet une limite finie et :
$$\lim_{n \to +\infty} \mathbb{P}(U_n \cup V_n) = 1$$

• Finalement, d'après la propriété (*) :

$$\mathbb{P}(U_n \cap V_n) = \mathbb{P}(U_n) + \mathbb{P}(V_n) - \mathbb{P}(U_n \cup V_n)$$

$$\underset{n \to +\infty}{\longrightarrow} 1 + 1 - 1 \qquad (par \ hypoth\`ese \\ et \ par \ ce \ qui \ pr\'ec\`ede)$$

Ainsi, la suite
$$\left(\mathbb{P}(U_n \cap V_n)\right)_{n \in \mathbb{N}}$$
 admet une limite finie et : $\lim_{n \to +\infty} \mathbb{P}(U_n \cap V_n) = 1$.

- On rappelle que l'on dit qu'un événement A est presque sûr lorsque $\mathbb{P}(A) = 1$.
- 10. On note pour tout $n \in \mathbb{N}^*$, $A_n = \bigcap_{k=n}^{+\infty} [Z_k = 0]$ et B l'événement « la contamination s'éteint au bout d'un nombre fini de jours ».
 - a) Démontrer : $\mathbb{P}(B) = \lim_{n \to +\infty} \mathbb{P}(A_n)$.

Démonstration.

• Remarquons tout d'abord :

L'événement B est réalisé

- ⇔ La contamination s'éteint au bout d'un nombre fini de jours
- \Leftrightarrow Il existe un jour n à partir duquel plus aucun individu n'est infecté
- \Leftrightarrow Il existe un jour n à partir duquel le nombre d'individus infectés chaque jour est nul
- \Leftrightarrow Il existe un jour n tel que pour tout jour ultérieur k (jour n compris), Z_k prend la valeur 0
- \Leftrightarrow Il existe un jour n tel que pour tout jour ultérieur k (jour n compris), l'événement $[Z_k = 0]$ est réalisé
- \Leftrightarrow Il existe un jour n tel que l'événement $\bigcap_{k=n}^{+\infty} [Z_k = 0]$ est réalisé
- \Leftrightarrow L'événement $\bigcup_{n=1}^{+\infty} \bigcap_{k=n}^{+\infty} [Z_k = 0]$ est réalisé

On en conclut :
$$B = \bigcup_{n=1}^{+\infty} \bigcap_{k=n}^{+\infty} [Z_k = 0] = \bigcup_{n=1}^{+\infty} A_n$$
.

• On en déduit :

$$\mathbb{P}(B) = \mathbb{P}\left(\bigcup_{n=1}^{+\infty} A_n\right)$$

$$= \lim_{r \to +\infty} \mathbb{P}\left(\bigcup_{n=1}^{r} A_n\right) \qquad \begin{array}{c} (d'après \ le \ th\'{e}or\`{e}me \\ de \ la \ limite \ monotone) \end{array}$$

• Or la suite $(A_n)_{n\in\mathbb{N}^*}$ est une suite croissante d'événements. En effet, pour tout $n\in\mathbb{N}^*$:

$$A_n = \bigcap_{k=n}^{+\infty} [Z_k = 0]$$

$$= [Z_n = 0] \cap \bigcap_{k=n+1}^{+\infty} [Z_k = 0]$$

$$= [Z_n = 0] \cap A_{n+1} \subset A_{n+1}$$

On en déduit : $\bigcup_{n=1}^{r} A_n = A_r$.

Finalement :
$$\mathbb{P}(B) = \lim_{r \to +\infty} \mathbb{P}\left(\bigcup_{n=1}^{r} A_n\right) = \lim_{r \to +\infty} \mathbb{P}(A_r)$$
.

Commentaire

- Afin de résoudre un exercice de calcul de probabilités, il faudra penser au schéma suivant.
- 1) Introduire des événements simples (« tirer une boule blanche au $i^{\rm ème}$ tirage », « obtenir Pile au $i^{\rm ème}$ lancer ...) liés à l'expérience considérée.

Nommer l'événement A dont on cherche à déterminer la probabilité. (ces deux étapes sont parfois directement données dans l'énoncé)

- 2) Décomposer l'événement A à l'aide d'événements simples.
- 3) Deux cas se présentent alors :
- (i) si cette décomposition fait apparaître une union, il faut retenir le triptyque :

Dans le cas d'une union finie d'événements

- Si cela est possible, on simplifie cette union (cas d'une union d'une suite croissante d'événements par exemple).
- Sinon, on vérifie si les événements sont 2 à 2 incompatibles.
- \times si c'est le cas, on utilise l'additivité de $\mathbb{P}.$
- \times si ce n'est pas le cas, on peut penser à utiliser la formule du crible.

Commentaire

Dans le cas d'une union infinie d'événements

- On vérifie si les événements sont 2 à 2 incompatibles :
- \times si c'est le cas, on utilise la σ -additivité de \mathbb{P} .
- × si ce n'est pas le cas, on se ramène au cas d'une union finie d'événements en utilisant le corollaire du théorème de la limite monotone.

Si toutes ces tentatives échouent, on peut se ramener au cas d'une intersection d'événements en considérant l'événement contraire.

(i) si cette décomposition fait apparaître une intersection, il faut retenir le triptyque :

$$intersection\ /\ indépendance\ /\ produit$$

Dans le cas d'une intersection finie d'événements

- Si cela est possible, on simplifie cette intersection (cas d'une intersection d'une suite décroissante d'événements par exemple).
- Sinon, on vérifie si les événements sont mutuellement indépendants.
- × si c'est le cas, on utilise la formule associée.
- × si ce n'est pas le cas, on peut penser à utiliser la formule des probabilités composées.
- Dans un exercice de probabilités discrètes, il est assez fréquent de considérer des expériences qui font intervenir un nombre infini d'étapes. Dès lors, il est assez naturel de s'interroger sur la probabilité qu'une propriété puisse se réaliser une infinité (successive) de fois ou qu'une propriété soit réalisé au moins une fois au cours de l'expérience. Cela revient à considérer des événements qui s'écrivent à l'aide d'une union et / ou d'une intersection infinie d'événements. Pour déterminer la probabilité de tels événements, la méthode usuelle consiste à utiliser le théorème de la limite monotone. Il stipule, si $(A_k)_{k\in\mathbb{N}^*}$ est une suite d'événements :

$$\mathbb{P}\left(\bigcap_{k=1}^{+\infty} A_k\right) = \lim_{n \to +\infty} \mathbb{P}\left(\bigcap_{k=1}^{n} A_k\right)$$

$$\mathbb{P}\left(\bigcup_{k=1}^{+\infty} A_k\right) = \lim_{n \to +\infty} \mathbb{P}\left(\bigcup_{k=1}^{n} A_k\right)$$

Il est à noter qu'aucune hypothèse n'est faite sur la suite (A_k) d'événements. Elle peut être une suite croissante ou décroissante d'événements ou n'être ni décroissante, ni croissante. Cette question de la monotonie de la suite ne se pose pas lors de l'utilisation du théorème de la limite monotone. Elle n'apparaît que dans l'étape suivante où l'on cherche à déterminer la probabilité d'une intersection / union finie d'événements.

• On a vu dans le point précédent que certaines propriétés s'expriment naturellement à l'aide d'une union / intersection infinie d'événements. En conséquence, l'utilisation du théorème de la limite monotone est assez fréquente aux concours. Lors de la session 2021, les sujets ECRICOME, EDHEC, ESSEC-I, ESSEC-II contenaient tous une question qui nécissitait l'utilisation de ce théorème.

b) En distinguant les cas où $\mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k=0]\right)$ est nulle ou pas, établir, pour tout $p\geqslant d$:

$$\mathbb{P}\left(\bigcap_{k=n}^{n+p} [Z_k = 0]\right) = \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$$

puis :
$$\mathbb{P}(A_n) = \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$$
.

Démonstration.

Soit $p \ge d$. Deux cas se présentent.

• Si $\mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k=0]\right)=0$, on remarque tout d'abord :

$$\bigcap_{k=n}^{n+p} [Z_k = 0] = \bigcap_{k=n}^{n+d} [Z_k = 0] \cap \bigcap_{k=n+d+1}^{n+p} [Z_k = 0] \subset \bigcap_{k=n}^{n+d} [Z_k = 0]$$

On en déduit :

$$0 \leqslant \mathbb{P}\left(\bigcap_{k=n}^{n+p} [Z_k = 0]\right) \leqslant \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) = 0$$

(l'inégalité de droite étant obtenue par croissance de l'application \mathbb{P})

Ainsi, si
$$\mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) = 0$$
, alors : $\mathbb{P}\left(\bigcap_{k=n}^{n+p} [Z_k = 0]\right) = 0$.

• Si $\mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k=0]\right) \neq 0$, on note, pour plus de lisibilité, et pour tout $j \in \mathbb{N}$:

$$C_{n,j} = \bigcap_{k=n}^{n+j} [Z_k = 0]$$

On a alors : $\mathbb{P}_{C_{n,d}}\left(\bigcap_{k=n}^{n+p} [Z_k = 0]\right) = 1.$

En effet, si $C_{n,d} = \bigcap_{k=n}^{n+d} [Z_k = 0]$ est réalisé, c'est qu'entre les jours n et n+d, c'est-à-dire pendant une durée de d+1 jours, aucun n'individu n'est infecté. Cela assure que les individus contaminés avant cette période de d+1 jours, ne sont plus contagieux.

Dans ce cas, il n'y a plus d'individu contagieux dans la population et il ne peut donc plus y avoir de nouveaux infectés. Ainsi, l'événement $\bigcap_{k=n}^{n+p} [Z_k = 0]$ est alors réalisé.

$$\forall p \geqslant d, \, \mathbb{P}_{C_{n,d}} \left(\bigcap_{k=n}^{n+p} \left[Z_k = 0 \right] \right) = 1$$

Or:

$$\mathbb{P}_{C_{n,d}}\left(\bigcap_{k=n}^{n+p} \left[Z_k = 0\right]\right) = \frac{\mathbb{P}\left(\bigcap_{k=n}^{n+d} \left[Z_k = 0\right] \cap \bigcap_{k=n}^{n+p} \left[Z_k = 0\right]\right)}{\mathbb{P}\left(\bigcap_{k=n}^{n+d} \left[Z_k = 0\right]\right)}$$

Et comme :
$$\bigcap_{k=n}^{n+p} [Z_k = 0] \subset \bigcap_{k=n}^{n+d} [Z_k = 0]$$
, alors :

$$\bigcap_{k=n}^{n+d} [Z_k = 0] \cap \bigcap_{k=n}^{n+p} [Z_k = 0] = \bigcap_{k=n}^{n+p} [Z_k = 0]$$

On en conclut :

$$1 = \mathbb{P}_{C_{n,d}} \left(\bigcap_{k=n}^{n+p} [Z_k = 0] \right) = \frac{\mathbb{P} \left(\bigcap_{k=n}^{n+p} [Z_k = 0] \right)}{\mathbb{P} \left(\bigcap_{k=n}^{n+d} [Z_k = 0] \right)}$$

Ainsi, si
$$\mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) \neq 0$$
, alors : $\mathbb{P}\left(\bigcap_{k=n}^{n+p} [Z_k = 0]\right) = \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$.

Dans tous les cas :
$$\forall p \geqslant d$$
, $\mathbb{P}\left(\bigcap_{k=n}^{n+p} [Z_k = 0]\right) = \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$.

• Par ailleurs, pour tout $n \in \mathbb{N}^*$, par définition de A_n :

$$\mathbb{P}(A_n) = \mathbb{P}\left(\bigcap_{k=n}^{+\infty} [Z_k = 0]\right)$$

$$= \lim_{m \to +\infty} \mathbb{P}\left(\bigcap_{k=n}^{m} [Z_k = 0]\right) \qquad (par \ le \ th\'eor\`eme \ de \ la \ limite \ monotone)$$

$$= \lim_{p \to +\infty} \mathbb{P}\left(\bigcap_{k=n}^{n+p} [Z_k = 0]\right) \qquad (avec \ le \ changement \ de \ variable \ m = n + p)$$

$$= \lim_{p \to +\infty} \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) \qquad (d'apr\`es \ ce \ qui \ pr\'ec\`ede)$$

$$= \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) \qquad (puisque \ la \ quantit\'e \ \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$$

$$= \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) \qquad (puisque \ la \ quantit\'e \ \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$$

$$= \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) \qquad (puisque \ la \ quantit\'e \ \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$$

$$= \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) \qquad (puisque \ la \ quantit\'e \ \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$$

c) En déduire que B est presque sûr si et seulement si $\lim_{n\to+\infty} \mathbb{P}([Z_n=0]) = 1$.

Démonstration.

Tout d'abord:

$$B$$
 est presque sûr $\Leftrightarrow \lim_{n \to +\infty} \mathbb{P}(A_n) = 1$ $(d'après \ la \ question \ \mathbf{10.a})$ $\Leftrightarrow \lim_{n \to +\infty} \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) = 1 \quad (d'après \ la \ question \ \mathbf{10.b})$

Il s'agit donc de démontrer :

$$\lim_{n \to +\infty} \mathbb{P} \left(\bigcap_{k=n}^{n+d} [Z_k = 0] \right) = 1 \iff \lim_{n \to +\infty} \mathbb{P} \left([Z_n = 0] \right) = 1$$

On procède par double implication.

$$(\Rightarrow)$$
 Supposons: $\lim_{n\to+\infty} \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k=0]\right) = 1. \text{ Or }:$

$$\bigcap_{k=n}^{n+d} [Z_k = 0] \subset [Z_n = 0] \subset \Omega$$

donc
$$\mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) \leqslant \mathbb{P}\left([Z_n = 0]\right) \leqslant \mathbb{P}(\Omega)$$
 (par croissance de l'application \mathbb{P})

Or:

$$\times \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k=0]\right) \xrightarrow[n \to +\infty]{} 1 \text{ par hypothèse.}$$

$$\times \mathbb{P}(\Omega) = 1 \longrightarrow_{n \to +\infty} 1.$$

Ainsi, par théorème d'encadrement, la suite $\left(\mathbb{P}\left(\left[Z_{n}=0\right]\right)\right)_{n\in\mathbb{N}^{*}}$ converge et : $\lim_{n\to+\infty}\mathbb{P}\left(\left[Z_{n}=0\right]\right)=1.$

 (\Leftarrow) Supposons $\lim_{n \to +\infty} \mathbb{P}([Z_n = 0]) = 1.$

On en déduit :

$$\times \mathbb{P}([Z_{n+1}=0]) \xrightarrow[n \to +\infty]{} 1$$

× ...

$$\times \mathbb{P}([Z_{n+d}=0]) \xrightarrow[n \to +\infty]{} 1$$

car, comme la suite $(\mathbb{P}([Z_n=0]))_{n\in\mathbb{N}^*}$ converge vers 1, il en est de même de toutes ses sous-suites.

On peut alors appliquer successivement la question 9 comme suit :

× en notant, pour tout $n \in \mathbb{N}^*, U_n = [Z_n = 0]$ et $V_n = [Z_{n+1} = 0]$, on obtient :

$$\mathbb{P}\left(\left[Z_{n}=0\right] \cap \left[Z_{n+1}=0\right]\right) \underset{n \to +\infty}{\longrightarrow} 1$$

× en notant, pour tout $n \in \mathbb{N}^*$, $U_n = [Z_n = 0] \cap [Z_{n+1} = 0]$ et $V_n = [Z_{n+2} = 0]$, on obtient :

$$\mathbb{P}\left(\left[Z_{n}=0\right] \cap \left[Z_{n+1}=0\right] \cap \left[Z_{n+2}=0\right]\right) \underset{n \to +\infty}{\longrightarrow} 1$$

× ...

× en notant, pour tout $n \in \mathbb{N}^*$, $U_n = \bigcap_{i=0}^{d-1} [Z_{n+i} = 0]$ et $V_n = [Z_{n+d} = 0]$, on obtient :

$$\mathbb{P}\left(\bigcap_{i=0}^{d-1} \left[Z_{n+1} = 0 \right] \cap \left[Z_{n+d} = 0 \right] \right) \xrightarrow[n \to +\infty]{} 1$$

Finalement, on a bien :
$$\mathbb{P}\left(\bigcap_{i=0}^{d} [Z_{n+i}=0]\right) = \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k=0]\right) \xrightarrow[n \to +\infty]{} 1.$$

L'équivalence annoncée est bien vérifiée, ce qui permet de conclure :

B est presque sûr
$$\Leftrightarrow \lim_{n \to +\infty} \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right) = 1 \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}\left([Z_n = 0]\right) = 1$$

Commentaire

• En question 9, on énonce une propriété pour deux suites. Cette propriété s'étend facilement à un nombre fini de suites. On peut le démontrer rigoureusement en procédant par récurrence. Plus précisément, on démontre :

$$\forall m \in [2, +\infty[, \mathcal{P}(m)]$$

où $\mathcal{P}(m)$: si m suites d'événements sont asymptotiquement presque sûrs, alors l'intersection de leurs termes généraux est elle-aussi asymptotiquement presque sûre.

- L'initialisation correspond à la question 9.
 L'hérédité correspond à la dernière étape réalisée dans la question précédente. L'intersection des m + 1 termes généraux peut s'écrire comme l'intersection entre :
 - \times l'intersection des m premiers termes généraux. Cette intersection est asymptotiquement presque sûre par hypothèse de récurrence.
 - \times le terme général de la $(m+1)^{\rm ème}$ suite. Ce terme est asymptotiquement presque sûr par hypothèse.

On en conclut alors que l'intersection des m+1 termes généraux de ces suites est asymptotiquement presque sûre en appliquant la propriété au rang 2 (c'est-à-dire en appliquant le résultat de la question $\boldsymbol{9}$).

d) Montrer que cela équivaut aussi au fait que $(Z_n)_{n\in\mathbb{N}}$ converge en loi vers 0.

Démonstration.

Il s'agit de démontrer que la suite $(Z_n)_{n\in\mathbb{N}}$ converge en loi vers la v.a.r. Z constante nulle. Or :

- \times la v.a.r. Z est une v.a.r. discrète telle que : $Z(\Omega) = \{0\} \subset \mathbb{N}$.
- × pour tout $n \in \mathbb{N}$, la v.a.r. Z est une v.a.r. discrète telle que : $Z_n(\Omega) \subset \mathbb{N}$ (car Z_n prend pour valeur un nombre d'individus).

Ainsi, d'après le cours :

$$Z_n \xrightarrow[n \to +\infty]{\mathscr{L}} Z \Leftrightarrow \forall j \in \mathbb{N}, \ \lim_{n \to +\infty} \mathbb{P}([Z_n = j]) = \mathbb{P}([Z = j]) = \begin{cases} 1 & \text{si } j = 0 \\ 0 & \text{si } j = 1 \end{cases}$$

Il s'agit alors de démontrer :

$$\forall j \in \mathbb{N}, \ \lim_{n \to +\infty} \mathbb{P}([Z_n = j]) = \begin{cases} 1 & \text{si } j = 0 \\ & \text{si} & \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}([Z_n = 0]) = 1 \\ 0 & j \in \mathbb{N}^* \end{cases}$$

On procède par double implication.

 (\Rightarrow) On suppose:

$$\forall j \in \mathbb{N}, \lim_{n \to +\infty} \mathbb{P}([Z_n = j]) = \begin{cases} 1 & \text{si } j = 0 \\ & \text{si} \\ 0 & \text{j} \in \mathbb{N}^* \end{cases}$$

En particulier, pour j = 0, on obtient : $\lim_{n \to +\infty} \mathbb{P}([Z_n = 0]) = 1$.

 $(\Leftarrow) \text{ On suppose}: \lim_{n \to +\infty} \mathbb{P}\big(\left[Z_n = 0\right]\big) \ = \ 1.$

On cherche alors à montrer : $\forall j \in \mathbb{N}^*, \lim_{n \to +\infty} \mathbb{P}([Z_n = j]) = 0.$

La famille $([Z_n = i])_{i \in \mathbb{N}}$ est un système complet d'événements. On en déduit :

$$\sum_{i=0}^{+\infty} \mathbb{P}([Z_n = i]) = 1$$

$$\operatorname{donc} \quad \mathbb{P}([Z_n = 0]) + \sum_{i=1}^{+\infty} \mathbb{P}([Z_n = i]) = 1$$

$$\operatorname{donc} \quad \sum_{i=1}^{+\infty} \mathbb{P}([Z_n = i]) = 1 - \mathbb{P}([Z_n = 0]) \xrightarrow[n \to +\infty]{} 1 - 1 = 0$$

Par ailleurs, pour tout $j \in \mathbb{N}^*$:

$$0 \leqslant \mathbb{P}([Z_n = j]) \leqslant \sum_{i=1}^{+\infty} \mathbb{P}([Z_n = i])$$

Or:

$$\times 0 \longrightarrow_{n \to +\infty} 0$$

$$\times \sum_{i=1}^{+\infty} \mathbb{P}([Z_n = i]) \xrightarrow[n \to +\infty]{} 0$$

Ainsi, par théorème d'encadrement, la suite $\left(\mathbb{P}\left(\left[Z_n=j\right]\right)\right)_{n\in\mathbb{N}^*}$ est convergente, et de limite nulle. On a bien démontré : $\forall j\in\mathbb{N}^*, \lim_{n\to+\infty}\mathbb{P}\left(\left[Z_n=j\right]\right)=0$.

Finalement, on a bien :
$$Z_n \xrightarrow[n \to +\infty]{\mathscr{L}} Z \Leftrightarrow \lim_{n \to +\infty} \mathbb{P}([Z_n = 0]) = 1.$$

11. a) Montrer, en utilisant un résultat de la Partie 1, que pour tout $n \in \mathbb{N}$:

$$\mathbb{P}([Z_{n+1}=0]) = \mathbb{E}(e^{-Y_n})$$

Démonstration.

- D'après l'énoncé, $Z_{n+1} \hookrightarrow \mathcal{P}(Y_n)$ et $J = [0, +\infty[$. Rappelons (comme en question 7.a)) que cela signifie qu'il existe un processus $(X_t)_{t \in [0, +\infty[}$ constitué de v.a.r. :
 - \times à valeurs dans \mathbb{N} ,
 - \times indépendantes de Y_n ,
 - × et telles que pour tout $t \in [0, +\infty[: X_t \hookrightarrow \mathcal{P}(t).$

Ainsi, d'après la propriété (1), pour tout $k \in \mathbb{N}$:

$$\mathbb{P}\big(\left[Z_{n+1} = k\right]\big) = \mathbb{E}\big(f_k(Y_n)\big)$$

En particulier :
$$\mathbb{P}([Z_{n+1}=0]) = \mathbb{E}(f_0(Y_n))$$
.

• Or, par définition :

$$f_0$$
: $[0, +\infty[\rightarrow \mathbb{R}$

$$t \mapsto \mathbb{P}([X_t = 0]) = e^{-t} \frac{t^0}{0!} = e^{-t}$$

Finalement, on a bien :
$$\mathbb{P}([Z_{n+1}=0]) = \mathbb{E}(e^{-Y_n})$$
.

33

b) On suppose : $\lim_{n \to +\infty} z_n = 0$. En déduire que B est presque sûr (on pourra montrer que pour tout x reel, $e^{-x} \ge 1 - x$).

 $D\'{e}monstration.$

• La fonction $g: x \mapsto e^{-x}$ est de classe \mathcal{C}^2 sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$:

$$g'(x) = -e^{-x}$$
 et $g''(x) = -(-e^{-x}) = e^{-x} > 0$

Ainsi, g est convexe sur \mathbb{R} .

Sa courbe représentative C_g se situe donc au dessus de ses tangentes, notamment celle au point d'abscisse 0. Or cette tangente est la droite d'équation :

$$y = g(0) + g'(0) x$$

= $e^{-0} + (-e^{-0}) x = 1 - x$

On en déduit : $\forall x \in \mathbb{R}, e^{-x} \geqslant 1 - x$.

Commentaire

- L'inégalité souhaitée exprime le fait que la courbe représentative de la fonction $x \mapsto e^{-x}$ se situe au-dessus de la courbe représentative de la fonction $x \mapsto 1 x$. Cette dernière fonction est un polynôme de degré 1 (fonction affine) et sa représentation graphique est donc une droite. C'est ce constat qui doit faire penser à une inégalité de convexité car ce type d'inégalité exprime justement la position relative d'une courbe par rapport à une droite (une tangente ou une corde).
- Si on ne pense pas à utiliser une propriété de convexité, on peut aussi résoudre cette question en étudiant le signe de la fonction $x \mapsto e^{-x} (1-x)$.
- On en déduit, pour tout $\omega \in \Omega$:

$$e^{-Y_n(\omega)} \geqslant 1 - Y_n(\omega)$$

en appliquant l'inégalité de la question précédente en $x=Y_n(\omega)$. Autrement dit :

$$e^{-Y_n} \geqslant 1 - Y_n$$

D'après la question précédente, la v.a.r. e^{-Y_n} admet une espérance.

La v.a.r. $1 - Y_n$ admet une espérance en tant que transformée affine de la v.a.r. Y_n qui admet une espérance d'après la question 7.a).

Par croissance de l'espérance, on a :

$$\mathbb{E}\left(e^{-Y_n}\right) \geqslant \mathbb{E}(1-Y_n)$$

Et ainsi:

$$\mathbb{E}(1-Y_n) = 1 - \mathbb{E}(Y_n) \qquad (par \ linéarit\'e \ de \ l'esp\'erance)$$

$$= 1 - \mathbb{E}(Z_{n+1}) \qquad (comme \ vu \ en \ question \ 7.a))$$

$$= 1 - z_{n+1}$$

On a alors:

$$1-z_{n+1} \leqslant \mathbb{E}\left(e^{-Y_n}\right) \leqslant 1$$
 (avec $e^{-Y_n} \leqslant 1$ car Y_n est une v.a.r. à valeurs positives et par croissance de l'espérance)

Or:

 $\times \lim_{n \to +\infty} (1 - z_{n+1}) = 1 - 0 = 1$ d'après l'hypothèse de cette question.

$$\times \lim_{n \to +\infty} 1 = 1.$$

Ainsi, par théorème d'encadrement, la suite $(\mathbb{E}\left(\mathrm{e}^{-Y_n}\right))_{n\in\mathbb{N}^*}$ est convergente, de limite 1.

• Finalement :

$$\mathbb{P}([Z_{n+1}=0]) = \mathbb{E}(e^{-Y_n}) \quad (d'après \ la \ question \ précédente)$$

$$\underset{n \to +\infty}{\longrightarrow} 1$$

Cela démontre que la suite $(\mathbb{P}([Z_n=0]))_{n\in\mathbb{N}^*}$ est convergente, de limite 1. Et ainsi, d'après la question 10.c), l'événement B est presque sûr.

Sous l'hypothèse : $\lim_{n \to +\infty} z_n = 0$, on a bien démontré que l'événement B est presque sûr.

Partie 3 - Limite du nombre moyen de contaminations journalières

Dans cette partie, on conserve les notations de la **Partie 2** et on s'intéresse au comportement asymptotique de la suite $(z_n)_{n\in\mathbb{N}}$, définie par la relation (3) et $z_0=1$, sous trois hypothèses différentes concernant la suite $(r_n)_{n\in\mathbb{N}}$.

Pour tout réel x, on identifie x et la matrice carrée d'ordre 1 dont l'unique coefficient est x.

Pour tout $k \in [0, d]$, on pose $a_k = \frac{\alpha_k}{\alpha}$.

- 12. On suppose, dans cette question, qu'il existe $N \in \mathbb{N}$ et $\rho \in]0,1[$ tels que, pour tout $n \geqslant N, r_n \alpha \leqslant \rho$. On note (H_1) cette hypothèse.
 - a) Que vaut $\lim_{t\to 1} \sum_{k=0}^d a_k t^{d-k}$?

En déduire qu'il existe $\theta \in]0,1[$ tel que $\theta^{d+1} \geqslant \rho\left(\sum_{k=0}^{d} a_k \theta^{d-k}\right)$ (on pourra raisonner par l'absurde).

Démonstration.

• Soit $t \in \mathbb{R}$. Avec le changement d'indice j = d - k, on remarque :

$$\sum_{k=0}^{d} a_k t^{d-k} = \sum_{j=0}^{d} a_{d-j} t^j$$

La fonction $t \mapsto \sum_{k=0}^{d} a_k t^{d-k}$ est donc une fonction polynomiale. On en déduit qu'elle est continue en 1 (elle est même continue sur \mathbb{R}). Ainsi :

$$\sum_{k=0}^{d} a_k \ t^{d-k} \ \underset{t\to 1}{\longrightarrow} \ \sum_{k=0}^{d} a_k \ 1^{d-k} \ = \ \sum_{k=0}^{d} a_k$$

De plus:

$$\sum_{k=0}^{d} a_k = \sum_{k=0}^{d} \frac{\alpha_k}{\alpha} = \frac{1}{\alpha} \sum_{k=0}^{d} \alpha_k = \frac{1}{\alpha} \times \alpha = 1$$

On en déduit :
$$\lim_{t\to 1} \sum_{k=0}^d a_k t^{d-k} = 1$$
.

• On procède par l'absurde.

Supposons:
$$\forall \theta \in]0,1[, \theta^{d+1} < \rho \left(\sum_{k=0}^{d} a_k \theta^{d-k} \right).$$

On sait:

 \times d'une part : $\lim_{\theta \to 1} \theta^{d+1} = 1^{d+1} = 1$,

× d'autre part :
$$\lim_{\theta \to 1} \rho \left(\sum_{k=0}^{d} a_k \, \theta^{d-k} \right) = \rho \times 1 = \rho.$$

Ainsi, par passage à la limite quand θ tend vers 1 :

$$1 \leqslant \rho$$

Absurde! (car $\rho \in [0, 1[$)

On en conclut qu'il existe
$$\theta \in]0,1[$$
 tel que : $\theta^{d+1} \geqslant \rho \left(\sum_{k=0}^{d} a_k \, \theta^{d-k}\right).$

Commentaire

On pouvait se passer d'un raisonnement par l'absurde en utilisant la définition de limite.

• Commençons par remarquer :

$$\lim_{t \to 1} \frac{t^{d+1}}{\sum_{k=0}^{d} a_k t^{d-k}} \xrightarrow[t \to 1]{} \frac{1^{d+1}}{1} = 1$$

(notons que, pour tout $t \in]0,1[$, le quotient $\frac{t^{d+1}}{\sum_{k=0}^{d} a_k t^{d-k}}$ est bien défini.

En effet, pour tout $k \in [0, d]$, $a_k > 0$, donc: $\sum_{k=0}^{d} a_k t^{d-k} > 0$)

• Par définition de la limite, pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que, pour tout $t \in [1 - \eta, 1[$:

$$\left| \frac{t^{d+1}}{\sum\limits_{k=0}^{d} a_k t^{d-k}} - 1 \right| \leqslant \varepsilon$$

$$\begin{array}{lll} \mathrm{donc} & -\varepsilon & \leqslant & \frac{t^{d+1}}{\sum\limits_{k=0}^{d} a_k t^{d-k}} - 1 & \leqslant & \varepsilon \\ \\ \mathrm{d'où} & 1 - \varepsilon & \leqslant & \frac{t^{d+1}}{\sum\limits_{k=0}^{d} a_k t^{d-k}} & \leqslant & 1 + \varepsilon \end{array}$$

d'où
$$1-\varepsilon \leqslant \frac{t^{d+1}}{\sum\limits_{k=0}^{d}a_kt^{d-k}} \leqslant 1+\varepsilon$$

Commentaire

• En particulier, en choisissant $\varepsilon = 1 - \rho > 0$, il existe $\delta > 0$ tel que, pour tout $t \in [1 - \delta, 1]$:

$$1 - (1 - \rho) \leqslant \frac{t^{d+1}}{\sum\limits_{k=0}^{d} a_k t^{d-k}}$$

Comme $\sum_{k=0}^d a_k t^{d-k} > 0$, on a alors : $\rho\left(\sum_{k=0}^d a_k t^{d-k}\right) \leqslant t^{d+1}$.

• Ainsi, en choissant par exemple $\theta = 1 - \delta \in [1 - \delta, 1[$ (qui existe car δ existe), on obtient :

$$\rho\left(\sum_{k=0}^{d} a_k \theta^{d-k}\right) \leqslant \theta^{d+1}$$

• On pose $M = \max_{k \in \llbracket N, N+d \rrbracket} \frac{z_k}{\theta^k}$.

b) Démontrer, pour tout $n \ge N : z_n \le M \theta^n$.

 $D\'{e}monstration.$

Soit $n \ge N$. Deux cas se présentent.

• Si $n \in [N, N+d]$, alors, par définition du maximum :

$$\frac{z_n}{\theta^n} \leqslant \max_{k \in [N,N+d]} \left(\frac{z_k}{\theta^k}\right) = M$$

Comme $\theta^n \ge 0$, on obtient bien : $z_n \le M \theta^n$.

- Si $n \in [N+d+1,+\infty[$, on procède par récurrence forte. Démontrons par récurrence forte : $\forall n \in [N+d+1,+\infty[$, $\mathcal{P}(n)$ où $\mathcal{P}(n): z_n \leqslant M \theta^n$.
 - ▶ Initialisation :
 - × D'après la relation (3):

$$z_{N+d+1} = r_{N+d} \sum_{k=0}^{\min(N+d,d)} \alpha_k z_{N+d-k}$$

Or, comme $d \leq N + d$:

$$\sum_{k=0}^{\min(N+d,d)} \alpha_k \, z_{N+d-k} \, = \, \sum_{k=0}^{d} \alpha_k \, z_{N+d-k}$$

× Pour majorer cette somme, on cherche à majorer chacun de ses termes. Soit $k \in [\![0,d]\!]$. Alors : $N+d-k \in [\![N,N+d]\!]$. On en déduit, d'après le cas étudié précédemment :

$$z_{N+d-k} \leqslant M \theta^{N+d-k}$$

Comme $\alpha_k \geqslant 0$, on obtient :

$$\alpha_k \, z_{N+d-k} \, \leqslant \, M \, \alpha_k \, \theta^{N+d-k}$$

D'où:

× De plus:

$$\begin{array}{lll} \sum_{k=0}^d \, \alpha_k \, \theta^{d-k} & = & \sum_{k=0}^d \, \alpha \, a_k \, \theta^{d-k} & = & \alpha \, \sum_{k=0}^d \, a_k \, \theta^{d-k} \end{array}$$

Or, d'après la question précédente :

$$\rho\left(\sum_{k=0}^{d}a_{k}\,\theta^{d-k}\right) \leqslant \theta^{d+1}$$

$$\operatorname{donc} \quad \sum_{k=0}^{d}a_{k}\,\theta^{d-k} \leqslant \frac{1}{\rho}\,\theta^{d+1} \qquad (\operatorname{car}\,\rho>0)$$

$$\operatorname{d'où} \quad \alpha\sum_{k=0}^{d}a_{k}\,\theta^{d-k} \leqslant \frac{\alpha}{\rho}\,\theta^{d+1} \qquad (\operatorname{car}\,\alpha\geqslant0)$$

× Comme $M \theta^N \geqslant 0$, on obtient alors :

$$M \theta^N \sum_{k=0}^d \alpha_k \theta^{d-k} \leqslant M \theta^N \frac{\alpha}{\rho} \theta^{d+1} = M \frac{\alpha}{\rho} \theta^{N+d+1}$$

Ainsi, par transitivité:

$$\sum_{k=0}^{d} \alpha_k \, z_{N+d-k} \, \leqslant \, M \, \theta^N \, \sum_{k=0}^{d} \alpha_k \theta^{d-k} \, \leqslant \, M \, \frac{\alpha}{\rho} \, \theta^{N+d+1}$$

D'où, comme $r_{N+d} \ge 0$:

$$r_{N+d} \sum_{k=0}^{d} \alpha_k z_{N+d-k} \leqslant M \frac{\alpha r_{N+d}}{\rho} \theta^{N+d+1}$$

$$z_{N+d+1}$$

× Comme $M \, \theta^{N+d+1} \geqslant 0$, il reste alors à démontrer : $\frac{\alpha \, r_{N+d}}{\rho} \leqslant 1$.

Comme $N+d\geqslant N,$ d'après $(H_1),$ on a : $r_{N+d}\,\alpha\leqslant\rho.$ Or : $\rho>0.$ Ainsi :

$$\frac{r_{N+d}\,\alpha}{\rho}\leqslant 1$$

D'où $\mathcal{P}(N+d+1)$.

▶ Hérédité : soit $n \in [N+d+1, +\infty[$.

Supposons: $\forall j \in [N+d+1, n], \mathcal{P}(j)$. Et démontrons $\mathcal{P}(n+1)$ (i.e. $z_{n+1} \leqslant M \theta^{n+1}$).

× D'après la relation (3) :

$$z_{n+1} = r_n \sum_{k=0}^{\min(n,d)} \alpha_k z_{n-k}$$
$$= r_n \sum_{k=0}^{d} \alpha_k z_{n-k} \qquad (car \ n \geqslant N + d + 1 \geqslant d)$$

× Soit $k \in [0, d]$. Alors : $n - d \le n - k \le n$. Comme de plus $n \ge N + d + 1$, on a par transitivité :

$$N+1 \leqslant n-d \leqslant n-k \leqslant n$$

Deux cas se présentent alors :

- si $n-k \in [\![N+1,N+d]\!]$, alors on a déjà démontré en tout début de question :

$$z_{n-k} \leqslant M \theta^{n-k}$$

- si $n-k \in [\![N+d+1,n]\!],$ alors, par hypothèse de récurrence (appliquée à j=n-k) :

$$z_{n-k} \leqslant M \theta^{n-k}$$

Finalement, pour tout $k \in [0, d]$: $z_{n-k} \leq M \theta^{n-k}$.

× En raisonnant comme dans l'initialisation, on obtient :

$$\sum_{k=0}^{d} \alpha_k \, z_{n-k} \, \leqslant \, \sum_{k=0}^{d} M \, \alpha_k \, \theta^{n-k} = M \, \theta^{n-d} \, \sum_{k=0}^{d} \alpha_k \, \theta^{d-k}$$

× Toujours en raisonnant comme dans l'initialisation, on a :

$$\sum_{k=0}^{d} \alpha_k \, \theta^{d-k} \qquad \leqslant \qquad \frac{\alpha}{\rho} \, \theta^{d+1}$$

$$\operatorname{donc} \quad M \, \theta^{n-d} \, \sum_{k=0}^{d} \alpha_k \, \theta^{d-k} \quad \leqslant \quad M \, \theta^{n-d} \, \frac{\alpha}{\rho} \, \theta^{d+1} \qquad (\operatorname{car} M \, \theta^{n-d} \geqslant 0)$$

D'où, par transitivité:

$$\sum_{k=0}^{d} \alpha_k \, z_{n-k} \quad \leqslant \quad M \, \frac{\alpha}{\rho} \, \theta^{n-\mathbf{d}+\mathbf{d}+1}$$

$$\operatorname{donc} \quad r_n \, \sum_{k=0}^{d} \alpha_k \, z_{n-k} \quad \leqslant \quad M \, \frac{r_n \, \alpha}{\rho} \, \theta^{n+1}$$

$$\operatorname{d'où} \qquad z_{n+1} \qquad \leqslant \quad M \, \frac{r_n \, \alpha}{\rho} \, \theta^{n+1}$$

× Enfin, comme $n \ge N + d + 1 \ge N$, alors, d'après (H_1) : $\frac{r_n \alpha}{\rho} \le 1$. Ainsi:

$$z_n \leqslant M \frac{r_n \alpha}{\rho} \theta^{n+1} \leqslant M \theta^{n+1}$$

D'où $\mathcal{P}(n+1)$.

Par principe de récurrence forte : $\forall n \in [N+d+1, +\infty[, z_n \leq M \theta^n]$.

Finalement : $\forall n \in [N, +\infty[, z_n \leq M \theta^n]$.

Commentaire

• Rappelons le principe de la récurrence forte. Soit \mathcal{P} une propriété définie sur \mathbb{N} et telle que :

▶ Initialisation : $\mathcal{P}(0)$ est vraie,

▶ Hérédité : $\forall n \in \mathbb{N}, \ \left(\left(\forall j \in \llbracket 0, n \rrbracket, \, \mathcal{P}(j) \right) \ \Rightarrow \ \mathcal{P}(n+1) \right)$ (on pourrait aussi écrire : $\forall n \in \mathbb{N}, \ \left(\mathcal{P}(0) \text{ ET } \mathcal{P}(1) \text{ ET } \cdots \text{ ET } \mathcal{P}(n) \ \Rightarrow \ \mathcal{P}(n+1) \right)$)

Alors la propriété est vérifiée pour tout $n \in \mathbb{N}$. Autrement dit : $\forall n \in \mathbb{N}, \mathcal{P}(n)$.

- C'est la forme de la relation de récurrence de la suite (z_n) qui amène naturellement l'utilisation d'une récurrence forte. En effet, pour tout $n \in \mathbb{N}$, le terme z_{n+1} n'est pas défini seulement à l'aide de z_n mais à l'aide de plusieurs z_k précédents (plus précisément les termes z_{n-d}, \ldots, z_n).
- On pourrait penser que le principe de récurrence forte est plus puissant que le principe de récurrence simple. Mais ces principes sont en fait équivalents. Par exemple, pour résoudre cette question par récurrence simple, on démontrerait :

$$\forall n \in [N + d + 1, +\infty[, (\forall j \in [N + d + 1, n], \mathcal{P}(j))$$

Cela démontre notamment : $\forall n \in [N+d+1, +\infty[, \mathcal{P}(n)]$.

c) En déduire : $\lim_{n\to+\infty} z_n = 0$.

Démonstration.

• Soit $n \in \mathbb{N}$. Rappelons : $z_n = \mathbb{E}(Z_n)$. La v.a.r. Z_n est, par définition, à valeurs entières. Elle est donc en particulier positive.

Ainsi, par positivité de l'espérance :

$$\mathbb{E}(Z_n) \geqslant 0$$

$$\vdots$$

$$z_n$$

• Avec la question précédente, on en déduit, pour tout $n \ge N$:

$$0 \leqslant z_n \leqslant M \theta^n$$

Or:

 \times d'une part : $\lim_{n \to +\infty} 0 = 0$,

× d'autre part, comme $\theta \in]-1,1[$ (on a même : $\theta \in]0,1[): \lim_{n\to +\infty} \theta^n=0.$

Par théorème d'encadrement : $\lim_{n \to +\infty} z_n = 0$.

On montrerait de même que s'il existe $N \in \mathbb{N}$ et $\rho > 1$ tels que, pour tout $n \ge N$, $r_n \alpha \ge \rho$, on a $\lim_{n \to +\infty} z_n = +\infty$. On note (H_2) cette hypothèse.

• On suppose, dans les questions 13. à 16., que la suite $(r_n)_{n\in\mathbb{N}}$ est constante de valeur $\frac{1}{\alpha}$. On note (H_3) cette hypothèse.

On pose pour tout $n \in \mathbb{N}$:

$$U_n = \begin{pmatrix} z_n \\ z_{n-1} \\ \vdots \\ z_{n-d} \end{pmatrix}$$

avec $z_{-1} = \ldots = z_{-d} = 0$.

13. a) Montrer quil existe une matrice A carrée d'ordre d+1, de première ligne $L=(a_0 \cdots a_d)$, telle que pour tout $n \in \mathbb{N}$, $U_{n+1}=AU_n$.

Démonstration.

Soit $n \in \mathbb{N}$.

• On cherche à exprimer U_{n+1} en fonction de U_n . Explicitons ces deux matrices :

$$U_{n} = \begin{pmatrix} z_{n} \\ z_{n-1} \\ \vdots \\ z_{n-d+1} \\ z_{n-d} \end{pmatrix} \quad \text{et} \quad U_{n+1} = \begin{pmatrix} z_{n+1} \\ z_{n} \\ \vdots \\ z_{n+1-d+1} \\ z_{n+1-d} \end{pmatrix} = \begin{pmatrix} z_{n+1} \\ z_{n} \\ \vdots \\ z_{n-d+2} \\ z_{n-d+1} \end{pmatrix}$$

On remarque que les termes z_{n-d+1}, \ldots, z_n apparaissent à la fois dans les matrices U_n et U_{n+1} . On peut ainsi en déduire une première partie de la matrice $A \in \mathcal{M}_{d+1}(\mathbb{R})$ recherchée :

$$A = \begin{pmatrix} * & * & * & * & \cdots & * & * & * \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \ddots & & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

On a bien, avec cette expression:

$$A U_n = \begin{pmatrix} * \\ z_n \\ \vdots \\ z_{n-d+1} \end{pmatrix}$$

• Il reste alors à déterminer les coefficients de la 1^{ère} ligne pour que : $U_{n+1} = A U_n$. L'énoncé affirme que cette 1^{ère} ligne est : $L = (a_0 \cdots a_d)$. On pose alors :

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{d-2} & a_{d-1} & a_d \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \ddots & & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

Vérifions qu'on obtient bien : $U_{n+1} = A U_n$.

$$A U_{n} = \begin{pmatrix} a_{0} z_{n} + a_{1} z_{n-1} + \dots + a_{d-1} z_{n-d+1} + a_{d} z_{n-d} \\ \vdots \\ z_{n-d+1} \end{pmatrix} = \begin{pmatrix} \sum_{k=0}^{d} a_{k} z_{n-k} \\ z_{n} \\ \vdots \\ z_{n-d+1} \end{pmatrix}$$

Or, d'après la relation (3):

$$z_{n+1} = r_n \sum_{k=0}^{\min(n,d)} \alpha_k z_{n-k}$$

$$= \frac{1}{\alpha} \sum_{k=0}^{\min(n,d)} \alpha_k z_{n-k} \qquad (d'après\ (H_3))$$

$$= \sum_{k=0}^{\min(n,d)} \frac{\alpha_k}{\alpha} z_{n-k}$$

$$= \sum_{k=0}^{\min(n,d)} a_k z_{n-k}$$

Deux cas se présentent alors :

 \times si n < d, alors d'une part :

$$z_{n+1} = \sum_{k=0}^{\min(n,d)} a_k z_{n-k} = \sum_{k=0}^{n} a_k z_{n-k}$$

D'autre part :

$$\begin{array}{l} \sum\limits_{k=0}^{d} \, a_k \, z_{n-k} \; = \; \sum\limits_{k=0}^{n} \, a_k \, z_{n-k} + \sum\limits_{k=n+1}^{d} \, a_k \, z_{n-k} \end{array}$$

Avec le changement d'indice j = n - k, on obtient :

$$\sum_{k=n+1}^{d} a_k \, z_{n-k} \; = \; \sum_{j=n-d}^{-1} a_{n-j} \, z_j$$

Or, comme $n \in [0, d-1]$, alors : $n-d \in [-d, -1]$. On en déduit, d'après les conventions de l'énoncé, pour tout $j \in [n-d, -1]$: $z_j = 0$. D'où :

$$\sum_{k=0}^{d} a_k \, z_{n-k} \; = \; \sum_{k=0}^{n} a_k \, z_{n-k} + \sum_{j=n-d}^{-1} a_j \times 0 \; = \; z_{n+1}$$

 \times si $n \geqslant d$, alors on a direct ement :

$$z_{n+1} = \sum_{k=0}^{\min(n,d)} a_k z_{n-k} = \sum_{k=0}^{d} a_k z_{n-k}$$

Dans tous les cas, on obtient bien : $z_{n+1} = \sum_{k=0}^{d} a_k z_k$. Ainsi :

$$A U_{n} = \begin{pmatrix} \sum_{k=0}^{d} a_{k} z_{n-k} \\ z_{n} \\ \vdots \\ z_{n-d+1} \end{pmatrix} = \begin{pmatrix} z_{n+1} \\ z_{n} \\ \vdots \\ z_{n-d+1} \end{pmatrix} = U_{n+1}$$

Finalement, avec la matrice A proposée, on obtient : $\forall n \in \mathbb{N}, U_{n+1} = AU_n$.

Commentaire

• L'objectif annoncé de cette **Partie** 3 est l'étude du comportement asymptotique de la suite (z_n) . On aurait donc aimé que l'énoncé demande ici de déterminer la matrice A telle que :

$$\forall n \geqslant d, \quad U_{n+1} = A U_n$$

Cela aurait évité la difficulté (non pertinente pour l'objectif visé) de la disjonction de cas présentée plus haut.

• Les matrices ayant la forme de la matrice A sont appelées des matrices compagnons. Elles apparaissent naturellement lorsque l'on travaille avec des suites définies par récurrence, comme c'est le cas ici. Elles ont ceci de particulier que l'on connaît une condition nécessaire et suffisante à leur diagonalisabilité. En effet, notons Q le polynôme défini par :

$$Q(X) = X^{d+1} - a_0 X^d - a_1 X^{d-1} - \dots - a_{d-1} X - a_d$$

Alors la matrice A est diagonalisable si et seulement si le polynôme Q admet n racines distinctes. C'est d'ailleurs ce que l'on démontrera en question 15.a).

De plus, si A est diagonalisable, on peut même démontrer que les valeurs propres de A sont exactement les racines de Q.

b) En déduire que, pour tout $n \ge 0$, $U_n = A^n U_0$ puis que $z_{n+1} = L A^n U_0$.

Démonstration.

- Démontrons par récurrence : $\forall n \in \mathbb{N}, \mathcal{P}(n)$ où $\mathcal{P}(n) : U_n = A^n U_0$.
 - ► Initialisation :

$$A^0 U_0 = I_{d+1} U_0 = U_0$$

D'où $\mathcal{P}(0)$.

▶ Hérédité : soit $n \in \mathbb{N}$.

Supposons $\mathcal{P}(n)$ et démontrons $\mathcal{P}(n+1)$ (i.e. $U_{n+1} = A^{n+1} U_0$).

$$U_{n+1} = A U_n$$
 (d'après la question précédente)
 $= A \times A^n U_0$ (par hypothèse de récurrence)
 $= A^{n+1} U_0$

D'où $\mathcal{P}(n+1)$.

$$\forall n \in \mathbb{N}, \, U_n = A^n \, U_0$$

• Soit $n \in \mathbb{N}$. D'après la question précédente :

$$(z_{n+1}) = (a_0 z_n + \dots + a_d z_{n-d}) = L \times U_n = L \times A^n U_0$$

Ainsi, en identifiant \mathbb{R} et $\mathcal{M}_1(\mathbb{R})$: $\forall n \in \mathbb{N}, z_{n+1} = L A^n U_0$.

Commentaire

On retiendra qu'en multipliant $A^n \in \mathcal{M}_{d+1}(\mathbb{R})$ à gauche (resp. droite) par une matrice ligne (resp. colonne), on obtient une combinaison linéaire des lignes (resp. colonnes) de la matrice A^n . On peut retenir l'idée développée dans le paragraphe par la forme :

qui signifie qu'avec une multiplication à gauche, on effectue une opération sur les (L)ignes, tandis qu'avec une multiplication à droite, on effectue une multiplication sur les (C)olonnes.

14. Dans cette question, d=2 et $L=\begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \end{pmatrix}$.

Commentaire

Il aurait été judicieux de fournir ici l'expression complète de la matrice A aux candidats. Ces derniers auraient ainsi pu exhiber leurs connaissances en algèbre linéaire dans les questions suivantes, permettant ainsi aux correcteurs de mieux les classer.

a) Démontrer : $Sp(A) = \{1, -\frac{1}{2}, -\frac{1}{3}\}.$

Démonstration.

• Tout d'abord, d'après la question 13.a):

$$A = \begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

• Démontrons que 1 est valeur propre de A.

$$rg(A - I_3) = rg \begin{pmatrix} -\frac{5}{6} & \frac{2}{3} & \frac{1}{6} \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\stackrel{L_1 \leftarrow 6L_1}{=} rg \begin{pmatrix} -5 & 4 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\stackrel{L_2 \leftarrow 5L_2 + L_1}{=} rg \begin{pmatrix} -5 & 4 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\stackrel{L_3 \leftarrow L_3 + L_2}{=} rg \begin{pmatrix} -5 & 4 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Ainsi : $\operatorname{rg}(A - I_3) < 3$. D'où : $1 \in \operatorname{Sp} A$.

• Démontrons que $-\frac{1}{2}$ est valeur propre de A.

$$\operatorname{rg}(A + \frac{1}{2}I_{3}) = \operatorname{rg}\begin{pmatrix}\begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{6} \\ 1 & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} \end{pmatrix}\end{pmatrix}$$

$$\stackrel{L_{1} \leftarrow 6L_{1}}{=} \operatorname{rg}\begin{pmatrix}\begin{pmatrix} 4 & 4 & 1 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}\end{pmatrix}$$

$$\stackrel{L_{2} \leftarrow 2L_{2} - L_{1}}{=} \operatorname{rg}\begin{pmatrix}\begin{pmatrix} 4 & 4 & 1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{pmatrix}\end{pmatrix}$$

$$\stackrel{L_{2} \leftarrow 2L_{2} - L_{1}}{=} \operatorname{rg}\begin{pmatrix}\begin{pmatrix} 4 & 4 & 1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{pmatrix}\end{pmatrix}$$

$$\stackrel{L_{3} \leftarrow L_{3} + L_{2}}{=} \operatorname{rg}\begin{pmatrix}\begin{pmatrix} 4 & 4 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \end{pmatrix}\end{pmatrix}$$

Ainsi : rg
$$(A + \frac{1}{2}I_3) < 3$$
. D'où : $-\frac{1}{2} \in \operatorname{Sp} A$.

• Démontrons que $-\frac{1}{3}$ est valeur propre de A.

$$\operatorname{rg}\left(A + \frac{1}{3}I_{3}\right) = \operatorname{rg}\left(\begin{pmatrix} \frac{1}{2} & \frac{2}{3} & \frac{1}{6} \\ 1 & \frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{3} \end{pmatrix}\right)$$

$$\stackrel{L_{1} \leftarrow 6L_{1}}{\underset{L_{2} \leftarrow 3L_{2}}{\underset{L_{3} \leftarrow 3L_{3}}{\underset{L_{3} \leftarrow 3L_{3}}{\underset{L_{3} \leftarrow 2}{\underset{L_{3} \leftarrow L_{2} - L_{1}}{\underset{=}{\underset{=}$$

Ainsi :
$$\operatorname{rg}(A + \frac{1}{3}I_3) < 3$$
. D'où : $\frac{1}{3} \in \operatorname{Sp} A$.

• Ainsi : $\{1, -\frac{1}{2}, -\frac{1}{3}\} \subset \operatorname{Sp}(A)$. Or $A \in \mathcal{M}_3(\mathbb{R})$, elle admet donc au plus 3 valeurs propres distinctes.

On en déduit :
$$Sp(A) = \{1, -\frac{1}{2}, -\frac{1}{3}\}.$$

b) Déterminer une base (V_1, V_2, V_3) de $\mathcal{M}_{3,1}(\mathbb{R})$, où V_1 est un vecteur colonne propre de A pour la valeur propre 1, V_2 pour $-\frac{1}{2}$, V_3 pour $-\frac{1}{3}$, ces colonnes ayant leur premier coefficient égal à 1.

Démonstration.

• Déterminons $E_1(A)$.

Soit
$$X \in \mathcal{M}_{3,1}(\mathbb{R})$$
. Alors il existe $(x,y,z) \in \mathbb{R}^3$ tel que : $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

$$X \in E_{1}(A) \qquad \Leftrightarrow \qquad (A - I_{3})X = 0_{\mathcal{M}_{3,1}(\mathbb{R})}$$

$$\Leftrightarrow \qquad \begin{pmatrix} -\frac{5}{6} & \frac{2}{3} & \frac{1}{6} \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \qquad \begin{cases} -\frac{5}{6}x + \frac{2}{3}y + \frac{1}{6}z = 0 \\ x - y = 0 \\ y - z = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} -5x + 4y + z = 0 \\ -y + z = 0 \end{cases} \qquad \text{(avec les mêmes opérations qu'en question précédente)}$$

$$\Leftrightarrow \qquad \begin{cases} -5x + 4y = -z \\ y = z \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} -5x + 4y = -z \\ y = z \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} x = z \\ y = z \end{cases}$$

On en déduit :

$$E_{1}(A) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) \mid x = z \text{ ET } y = z \right\}$$

$$= \left\{ \begin{pmatrix} z \\ z \\ z \end{pmatrix} \mid z \in \mathbb{R} \right\} = \left\{ z \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mid z \in \mathbb{R} \right\}$$

$$= \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right)$$

On note alors : $V_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

• Déterminons $E_{-\frac{1}{2}}(A)$.

On en déduit :

$$E_{-\frac{1}{2}}(A) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) \mid x = \frac{1}{4} z \text{ ET } y = -\frac{1}{2} z \right\}$$

$$= \left\{ \begin{pmatrix} \frac{1}{4} z \\ -\frac{1}{2} z \\ z \end{pmatrix} \mid z \in \mathbb{R} \right\} = \left\{ z \cdot \begin{pmatrix} \frac{1}{4} \\ -\frac{1}{2} \\ 1 \end{pmatrix} \mid z \in \mathbb{R} \right\}$$

$$= \operatorname{Vect} \left(\begin{pmatrix} \frac{1}{4} \\ -\frac{1}{2} \\ 1 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} \right)$$

On note alors : $V_2 = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$.

• Déterminons $E_{-\frac{1}{2}}(A)$.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}).$$

$$\begin{split} X \in E_{-\frac{1}{3}}(A) &\iff (A + \frac{1}{3} \ I_3) X = 0_{\mathcal{M}_{3,1}(\mathbb{R})} \\ &\Leftrightarrow \begin{pmatrix} \frac{1}{2} & \frac{2}{3} & \frac{1}{6} \\ 1 & \frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \end{split}$$

On obtient alors:

On en déduit :

$$E_{-\frac{1}{3}}(A) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) \mid x = \frac{1}{9} z \text{ ET } y = -\frac{1}{3} z \right\}$$

$$= \left\{ \begin{pmatrix} \frac{1}{9} z \\ -\frac{1}{3} z \\ z \end{pmatrix} \mid z \in \mathbb{R} \right\} = \left\{ z \cdot \begin{pmatrix} \frac{1}{9} \\ -\frac{1}{3} \\ 1 \end{pmatrix} \mid z \in \mathbb{R} \right\}$$

$$= \operatorname{Vect} \left(\begin{pmatrix} \frac{1}{9} \\ -\frac{1}{3} \\ 1 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ -3 \\ 9 \end{pmatrix} \right)$$
On note alors: $V_3 = \begin{pmatrix} 1 \\ -3 \\ 9 \end{pmatrix}$.

- La famille $\mathcal{F} = (V_1, V_2, V_3)$ est :
 - × libre car constituée de vecteurs propres associés à des valeurs propres distinctes,
 - \times telle que : Card(\mathcal{F}) = 3 = dim ($\mathcal{M}_{3,1}(\mathbb{R})$).

La famille (V_1, V_2, V_3) ainsi définie est donc une base de $\mathcal{M}_{3,1}(\mathbb{R})$ qui satisfait aux conditions de l'énoncé.

Commentaire

• Il faut s'habituer à déterminer les ensembles $E_{\lambda}(A)$ par lecture de la matrice $A - \lambda \cdot I_3$.

• Illustrons la méthode avec la matrice de l'exercice et $\lambda=1.$

On cherche les vecteurs $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ de $E_1(A)$ c'est-à-dire les vecteurs tels que :

 $(A-I_3)\,X=0_{\mathcal{M}_{3,1}(\mathbb{R})}$ (d'après ce qui précède). Or :

$$\begin{pmatrix} -\frac{5}{6} & \frac{2}{3} & \frac{1}{6} \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \cdot C_1 + y \cdot C_2 + z \cdot C_3$$
$$= x \cdot \begin{pmatrix} -\frac{5}{6} \\ 1 \\ 0 \end{pmatrix} + y \cdot \begin{pmatrix} \frac{2}{3} \\ -1 \\ 1 \end{pmatrix} + z \cdot \begin{pmatrix} \frac{1}{6} \\ 0 \\ -1 \end{pmatrix}$$

Pour obtenir le vecteur $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ à l'aide de cette combinaison linéaire, on peut prendre

x = y = z = 1. On obtient alors :

$$E_1(A) \supset \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right)$$

Cette inclusion est en réalité une égalité. En effet, d'après le théorème du rang :

$$\dim \left(\mathscr{M}_{3,1}(\mathbb{R}) \right) = \dim \left(E_1(A) \right) + \operatorname{rg}(A - I_3)$$

$$2 \qquad \qquad (d'après \ la \ question \ précédente)$$

Ainsi : dim $(E_1(A)) = 3 - 2 = 1$ et l'égalité annoncée est vérifiée.

c) Déterminer $(s_1, s_2, s_3) \in \mathbb{R}^3$, tel que $U_0 = s_1 V_1 + s_2 V_2 + s_3 V_3$.

 $D\'{e}monstration.$

Soit $(s_1, s_2, s_3) \in \mathbb{R}^3$.

- Tout d'abord :
 - \times d'une part : $U_0 = \begin{pmatrix} z_0 \\ z_{-1} \\ z_{-2} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.
 - × d'autre part :

$$s_1 \cdot V_1 + s_2 \cdot V_2 + s_3 \cdot V_3 = \begin{pmatrix} s_1 + s_2 + s_3 \\ s_1 - 2s_2 - 3s_3 \\ s_1 + 4s_2 + 9s_3 \end{pmatrix}$$

• On cherche donc s_1 , s_2 et s_3 tel que : $\begin{cases} s_1 + s_2 + s_3 = 1 \\ s_1 - 2s_2 - 3s_3 = 0 \\ s_1 + 4s_2 + 9s_3 = 0 \end{cases}$ (*)

On en déduit :
$$U_0 = \frac{1}{2} \cdot V_1 + V_2 - \frac{1}{2} \cdot V_3$$
.

d) En déduire que la suite $(z_n)_{n\in\mathbb{N}}$ converge vers s_1 .

Démonstration.

• Soit $n \in \mathbb{N}$.

× D'après la question 13.b): $U_n = A^n U_0$.

 \times D'après la question précédente : $U_0 = \frac{1}{2} V_1 + V_2 - \frac{1}{2} V_3$. D'où :

$$U_n = A^n U_0$$

$$= A^n \left(\frac{1}{2} V_1 + V_2 - \frac{1}{2} V_3\right)$$

$$= \frac{1}{2} A^n V_1 + A^n V_2 - \frac{1}{2} A^n V_3$$

50

ECE2

Mathématiques

- On sait de plus :
 - $V_1 \in E_1(A)$. Donc : $A V_1 = V_1$.

Par récurrence immédiate : $\forall n \in \mathbb{N}, A^n V_1 = V_1$.

$$\times V_2 \in E_{-\frac{1}{2}}(A)$$
. Donc : $AV_2 = -\frac{1}{2}V_2$.

Par récurrence immédiate : $\forall n \in \mathbb{N}, A^n V_2 = \left(-\frac{1}{2}\right)^n V_2$.

$$\times V_3 \in E_{-\frac{1}{3}}(A)$$
. Donc : $AV_3 = -\frac{1}{3}V_3$.

Par récurrence immédiate : $\forall n \in \mathbb{N}, A^n V_3 = \left(-\frac{1}{3}\right)^n V_3$.

• On en déduit, pour tout $n \in \mathbb{N}$:

$$U_n = \frac{1}{2} V_1 + \left(-\frac{1}{2}\right)^n V_2 - \frac{1}{2} \left(-\frac{1}{3}\right)^n V_3$$

$$\begin{pmatrix} z_n \\ z_{n-1} \\ z_{n-2} \end{pmatrix} \qquad \begin{pmatrix} \frac{1}{2} + \left(-\frac{1}{2}\right)^n - \frac{1}{2}\left(-\frac{1}{3}\right)^n \\ \frac{1}{2} - 2\left(-\frac{1}{2}\right)^n + \frac{3}{2}\left(-\frac{1}{3}\right)^n \\ \frac{1}{2} + 4\left(-\frac{1}{2}\right)^n - \frac{9}{2}\left(-\frac{1}{3}\right)^n \end{pmatrix}$$

D'où :
$$z_n = \frac{1}{2} + \left(-\frac{1}{2}\right)^n - \frac{1}{2}\left(-\frac{1}{3}\right)^n$$
.

• Or :
$$\left(-\frac{1}{2}, -\frac{1}{3}\right) \in]-1, 1[^2$$
. Ainsi :

$$\times \lim_{n \to +\infty} \left(-\frac{1}{2} \right)^n = 0$$

$$\times \lim_{n \to +\infty} \left(-\frac{1}{3} \right)^n = 0$$

On en déduit :
$$\lim_{n \to +\infty} z_n = \frac{1}{2} = s_1$$
.

- 15. On revient au cas général.
 - a) Montrer que $\lambda \in \operatorname{Sp}(A)$ si et seulement si $\lambda^{d+1} = \sum_{k=0}^{d} a_{d-k} \lambda^k$ et que les sous-espaces propres de A sont de dimension 1.

Démonstration.

Soit $\lambda \in \mathbb{R}$.

• Tout d'abord :

$$\lambda \in \operatorname{Sp}(A) \iff A - \lambda I_{d+1} \text{ non inversible}$$

$$\Leftrightarrow \operatorname{rg}(A - \lambda I_{d+1}) < d+1$$

• Calculons alors : $rg(A - \lambda I_{d+1})$.

En poursuivant sur le même schéma, on obtient :
$$\begin{pmatrix} \begin{pmatrix} 1 & -\lambda & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & -\lambda & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \ddots & & 0 & & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & & -\lambda \\ 0 & 0 & 0 & \cdots & 0 & -\lambda^d + \lambda^{d-1} a_0 + \cdots + \lambda a_{d-2} + a_{d-1} & a_d \end{pmatrix}$$
 On effectue enfin l'opération $\{L_{d+1} \leftarrow L_{d+1} - (-\lambda^d + \lambda^{d-1} a_0 + \lambda^{d-2} a_1 + \cdots + \lambda a_{d-2} + a_{d-1}) L_d$.

On effectue enfin l'opération
$$\{L_{d+1} \leftarrow L_{d+1} - (-\lambda^d + \lambda^{d-1} a_0 + \lambda^{d-2} a_1 + \dots + \lambda a_{d-2} + a_{d-1}) L_d$$
.

$$\begin{pmatrix}
1 & -\lambda & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -\lambda & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & -\lambda & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & -\lambda^{d+1} + \lambda^d a_0 + \lambda^{d-1} a_1 + \dots + \lambda a_{d-1} + a_d
\end{pmatrix}$$

La réduite obtenue est triangulaire (supérieure).

Elle est donc non inversible si et seulement si l'un de ses coefficients diagonaux est nul.

On en déduit :

$$\operatorname{rg}(A - \lambda I_{d+1}) < d+1 \iff -\lambda^{d+1} + \lambda^d a_0 + \lambda^{d-1} a_1 + \dots + \lambda a_{d-1} + a_d = 0$$

$$\text{Autrement dit} : \lambda \in \operatorname{Sp}(A) \Leftrightarrow \lambda^{d+1} = \sum_{k=0}^d a_{d-k} \lambda^k.$$

• Supposons maintenant que λ est valeur propre de A. Alors, d'après ce qui précède : λ^{d+1}

$$\sum_{k=0}^{d} a_{d-k} \lambda^{k}. \text{ Déterminons } E_{\lambda}(A).$$
Soit $X = \begin{pmatrix} x_{0} \\ \vdots \\ x_{d} \end{pmatrix} \in \mathcal{M}_{d+1,1}(\mathbb{R}).$

$$X \in E_{\lambda}(A)$$

$$\Leftrightarrow (A - \lambda I_{d+1}) X = 0_{\mathcal{M}_{d+1,1}(A)}$$

$$\Leftrightarrow \begin{pmatrix} a_{0} - \lambda & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} & a_{d} \\ 1 & -\lambda & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & -\lambda & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \ddots & & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 1 & -\lambda & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & -\lambda \end{pmatrix} \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{d-1} \\ x_{d} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ x_{d-1} \\ x_{d} \end{pmatrix}$$

On obtient:

$$X \in E_{\lambda}(A)$$

$$\Leftrightarrow \begin{cases} (a_0 - \lambda) x_0 + a_1 x_1 + a_2 x_2 + \cdots + a_{d-2} x_{d-2} + a_{d-1} x_{d-1} + a_d x_d &= 0 \\ x_0 - \lambda x_1 &= 0 \\ x_1 - \lambda x_2 &= 0 \end{cases}$$

$$\vdots \vdots \vdots$$

$$x_{d-2} - \lambda x_{d-1} &= 0 \\ x_{d-1} - \lambda x_d &= 0 \end{cases}$$

$$\begin{cases} x_0 - \lambda x_1 & = 0 \\ x_1 - \lambda x_2 & = 0 \\ & \ddots & \vdots \vdots \\ x_{d-2} - \lambda x_{d-1} & = 0 \\ x_{d-1} - \lambda x_d & = 0 \end{cases}$$

$$(avec les mêmes opérations que pour le calcul de rang)$$

(avec les mêmes opérations que pour le calcul de rang)

Or, comme λ est valeur propre de A, alors : $\lambda^{d+1} = \sum_{k=0}^{d} a_{d-k} \lambda^k$. D'où :

$$-\lambda^{d+1} + \sum_{k=0}^{d} a_{d-k} \lambda^k = 0$$

On obtient alors:

on obtient alors :
$$X \in E_{\lambda}(A) \Leftrightarrow \begin{cases} x_0 - \lambda x_1 & = 0 \\ x_1 - \lambda x_2 & = 0 \\ & \ddots & \vdots \vdots \\ & x_{d-2} - \lambda x_{d-1} & = 0 \\ & x_{d-1} - \lambda x_d & = 0 \\ & 0 & = 0 \end{cases}$$

Ainsi:

 λx_d

 $x_{d-1} =$

0

• On en déduit :

$$E_{\lambda}(A) = \left\{ \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix} \mid x_0 = \lambda^d x_d \text{ ET } x_1 = \lambda^{d-1} x_d \text{ ET } \cdots \text{ ET } x_{d-1} = \lambda x_d \right\}$$

$$= \left\{ \begin{pmatrix} \lambda^d x_d \\ \lambda^{d-1} x_d \\ \vdots \\ \lambda x_d \\ x_d \end{pmatrix} \mid x_d \in \mathbb{R} \right\} = \left\{ x_d \cdot \begin{pmatrix} \lambda^d \\ \lambda^{d-1} \\ \vdots \\ \lambda \\ 1 \end{pmatrix} \mid x_d \in \mathbb{R} \right\}$$

$$= \text{Vect} \begin{pmatrix} \begin{pmatrix} \lambda^d \\ \lambda^{d-1} \\ \vdots \\ \lambda \\ 1 \end{pmatrix}$$

• La famille
$$\mathcal{F}_{\lambda} = \begin{pmatrix} \begin{pmatrix} \lambda^d \\ \lambda^{d-1} \\ \vdots \\ \lambda \\ 1 \end{pmatrix} \end{pmatrix}$$
 est :

- \times génératrice de $E_{\lambda}(A)$ d'après ce qui précède,
- × libre, car elle est constitutée uniquement d'un vecteur non nul.

C'est donc une base de A.

On en conclut, pour tout $\lambda \in \operatorname{Sp}(A)$: $\dim (E_{\lambda}(A)) = \operatorname{Card}(\mathcal{F}_{\lambda}) = 1$.

Commentaire

• Si chaque étape de la démonstration est à portée d'un bon élève de classe ECE, la prise d'initiative est beaucoup trop importante pour espérer qu'un élève en vienne à bout. Cette question n'a donc pas le rôle discriminant qu'ont généralement les questions de concours : classer les élèves selon qu'ils ont traité de manière satisfaisante ou non la question.

La présence d'une telle question permet de comprendre la stratégie à adopter lors des concours :

- il est essentiel de savoir repérer les questions les plus difficiles. Elles permettent de discriminer les candidats puisqu'il faut avoir du recul pour juger du niveau d'une question.
- il faut aborder ces questions en ayant en tête que le correcteur sera plus indulgent pour les candidats qui s'y aventurent. Cependant, il ne faut pas perdre du temps à essayer de les traiter jusqu'au bout : le nombre de points alloués ne sera certainement pas à la hauteur du temps investi pour traiter une telle question.

Il ne faut donc pas hésiter à passer les questions les plus difficiles et aller chercher les points où ils sont, à savoir sur les questions plus abordables du sujet.

Commentaire

• On peut regretter l'ambiguité de l'énoncé de cette question. Un candidat pourrait hésiter entre :

- 1) Montrer que $\lambda \in \operatorname{Sp}(A)$ si et seulement si $\lambda^{d+1} = \sum_{k=0}^{d} a_{n-k} \lambda^k$. Démontrer de plus que les sous-espaces propres de A sont de dimension 1.
- 2) Démontrer:

$$\lambda \in \operatorname{Sp}(A) \quad \Leftrightarrow \quad \left(\lambda^{d+1} = \sum_{k=0}^d a_{d-k} \, \lambda^k \right)$$
 ET les sous-espaces propres de A sont de dimension 1

C'est ici la démonstration de 1) qui est attendue. Il aurait été simple de clarifier les choses en changeant la formulation de cette question.

b) Montrer que 1 est valeur propre de A et déterminer le vecteur colonne propre associé V dont la somme des composantes vaut d+1.

Démonstration.

• D'après la question précédente :

$$1 \in \operatorname{Sp}(A) \Leftrightarrow 1^{d+1} = \sum_{k=0}^{d} a_{d-k} 1^{k}$$
$$\Leftrightarrow 1 = \sum_{k=0}^{d} a_{d-k}$$

Or, avec le changement d'indice j = d - k:

$$\sum_{k=0}^{d} a_{d-k} = \sum_{j=0}^{d} a_j = \sum_{j=0}^{d} \frac{\alpha_j}{\alpha} = \frac{1}{\alpha} \sum_{j=0}^{d} \alpha_j = \frac{1}{\alpha} \alpha = 1$$

On en déduit que 1 est valeur propre de A.

 \bullet Toujours d'après la question précédente, le sous-espace propre de A associé à la valeur propre 1 est :

$$E_1(A) = \operatorname{Vect} \left(\begin{pmatrix} 1^d \\ 1^{d-1} \\ \vdots \\ 1^1 \\ 1 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{pmatrix} \right)$$

En notant
$$V = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
, on obtient bien que la somme des

composantes de ce vecteur vaut d+1 et : $V \in E_1(A)$.

c) Établir que $-1 \notin \operatorname{Sp}(A)$ et que si $|\lambda| > 1$, alors $\lambda \notin \operatorname{Sp}(A)$.

Démonstration.

• D'après 15.a):

$$-1 \in \operatorname{Sp}(A) \Leftrightarrow (-1)^{d+1} = \sum_{k=0}^{d} a_{d-k} (-1)^{k}$$

$$\Leftrightarrow (-1)^{d+1} = \sum_{j=0}^{d} a_{j} (-1)^{d-j} \qquad \text{(avec le changement d'indice } j = d-k)$$

Ainsi:

$$-1 \notin \operatorname{Sp}(A) \Leftrightarrow (-1)^{d+1} \neq \sum_{j=0}^{d} a_j (-1)^{d-j}$$

- On va donc démontrer que le réel $\sum_{j=0}^{d} a_j (-1)^{d-j}$ ne peut ni être égal à 1, ni être égal à -1. Cela implique qu'il ne peut être égal à $(-1)^{d+1}$.
 - × Tout d'abord :

$$\sum_{j=0}^{d} a_j (-1)^{d-j} = \sum_{j=0}^{d-2} a_j (-1)^{d-j} - a_{d-1} + a_d$$

- × Démontrons : $\sum_{j=0}^{d} a_j (-1)^{d-j} \neq 1.$
 - Comme $a_{d-1} > 0$, alors : $-a_{d-1} < a_{d-1}$. Donc :

$$\sum_{j=0}^{d-2} a_j (-1)^{d-j} - a_{d-1} + a_d < \sum_{j=0}^{d-2} a_j (-1)^{d-j} + a_{d-1} + a_d$$

- De plus, pour tout $j \in [0, d-2]$: $(-1)^{d-j} \le 1$. Donc, puisque $a_j \ge 0$:

$$a_j (-1)^{d-j} \leqslant a_j$$

D'où:

$$\sum_{j=0}^{d-2} a_j (-1)^{d-j} \leqslant \sum_{j=0}^{d-2} a_j$$

Ainsi:

$$\sum_{j=0}^{d-2} a_j (-1)^{d-j} + a_d + a_{d-1} \leqslant \sum_{j=0}^{d-2} a_j + a_{d-1} + a_d$$

$$(d'après la quadratic description) (d'après la quadratic description) ($$

$$\sum_{j=0}^{d} a_j = 1 \qquad \begin{array}{c} (d'après \ la \ question \\ précédente) \end{array}$$

- Alors, par transitivité:

$$\sum_{j=0}^{d-2} a_j (-1)^{d-j} - a_{d-1} + a_d < \sum_{j=0}^{d-2} a_j (-1)^{d-j} + a_{d-1} + a_d \leq 1$$

$$\sum_{j=0}^{d} a_j (-1)^{d-j}$$

On en déduit :
$$\sum_{j=0}^{d} a_j (-1)^{d-j} \neq 1$$
.

- × Démontrons : $\sum_{j=0}^{d} a_j (-1)^{d-j} \neq -1.$
 - Comme $a_d > 0$, alors : $a_d > -a_d$. Donc :

$$\sum_{j=0}^{d-2} a_j (-1)^{d-j} - a_{d-1} + a_d > \sum_{j=0}^{d-2} a_j (-1)^{d-j} - a_{d-1} - a_d$$

- De plus, pour tout $j \in [0, d-2]$: $(-1)^{d-j} \ge -1$. Donc, puisque $a_j \ge 0$:

$$a_j (-1)^{d-j} \geqslant -a_j$$

D'où:

$$\sum_{j=0}^{d-2} a_j (-1)^{d-j} \geqslant -\sum_{j=0}^{d-2} a_j$$

Ainsi:

$$\sum_{j=0}^{d-2} a_j (-1)^{d-j} - a_d - a_{d-1} \geqslant -\sum_{j=0}^{d-2} a_j - a_{d-1} - a_d$$

$$-\sum_{j=0}^d a_j = -1 \qquad \begin{array}{c} (d\text{'après la question} \\ précédente) \end{array}$$

- Alors, par transitivité :

$$\sum_{j=0}^{d-2} a_j (-1)^{d-j} - a_{d-1} + a_d > \sum_{j=0}^{d-2} a_j (-1)^{d-j} - a_{d-1} - a_d \geqslant -1$$

$$\sum_{j=0}^{d} a_j (-1)^{d-j}$$

On en déduit :
$$\sum_{j=0}^{d} a_j (-1)^{d-j} \neq -1$$
.

On en conclut que -1 n'est pas valeur propre de A.

- Soit $\lambda \in \mathbb{R}$. Supposons : $|\lambda| > 1$.
 - × D'après 15.a), on souhaite démontrer :

$$\lambda^{d+1} \neq \sum_{k=0}^{d} a_{d-k} \lambda^k \qquad (*)$$

Comme la condition sur λ fait apparaître sa valeur absolue, on s'attachera à démontrer :

$$\begin{vmatrix} \lambda^{d+1} \end{vmatrix} \neq \begin{vmatrix} \sum_{k=0}^{d} a_{d-k} \lambda^k \end{vmatrix}$$

$$\begin{vmatrix} \lambda \end{vmatrix}^{d+1}$$

En effet, si cette dernière relation est vérifée, alors (*) l'est aussi.

× Tout d'abord, par inégalité triangulaire :

$$\left| \sum_{k=0}^{d} a_{d-k} \lambda^{k} \right| \leqslant \sum_{k=0}^{d} \left| a_{d-k} \lambda^{k} \right|$$

Or, pour tout $k \in [0, d]$, comme $a_{d-k} \ge 0$:

$$\left| a_{d-k} \lambda^k \right| = \left| a_{d-k} \right| \left| \lambda^k \right| = a_{d-k} \left| \lambda \right|^k$$

Ainsi:

$$\left| \sum_{k=0}^{d} a_{d-k} \lambda^k \right| \leqslant \sum_{k=0}^{d} a_{d-k} |\lambda|^k$$

 \times Soit $k \in [0, d]$.

Comme $|\lambda| > 1$, alors : $|\lambda|^k < |\lambda|^{d+1}$. En effet :

$$|\lambda|^k < |\lambda|^{d+1} \Leftrightarrow k \ln(|\lambda|) < (d+1) \ln(|\lambda|)$$
 (par stricte croissance de $\ln sur]0, +\infty[$)
 $\Leftrightarrow k < d+1$ (car, comme $|\lambda| > 1$, alors : $\ln(|\lambda|) > 0$)

Cette dernière assertion est vérifiée. Grâce au raisonnement par équivalence, la première également.

× Comme $a_{d-k} > 0$, on en déduit :

$$a_{d-k} |\lambda|^k < a_{d-k} |\lambda|^{d+1}$$

D'où:

$$\sum\limits_{k=0}^{d} \, a_{d-k} \, |\lambda|^k \, \, < \, \, \sum\limits_{k=0}^{d} \, a_{d-k} \, |\lambda|^{d+1}$$

Or, d'après la question précédente : $\sum_{k=0}^{d} a_{d-k} = 1$. Ainsi :

$$\sum_{k=0}^{d} a_{d-k} \, |\lambda|^{d+1} \; = \; |\lambda|^{d+1} \, \sum_{k=0}^{d} a_{d-k} \; = \; |\lambda|^{d+1} \times 1 \; = \; |\lambda|^{d+1}$$

On obtient alors:

$$\sum_{k=0}^{d} a_{d-k} |\lambda|^k < |\lambda|^{d+1}$$

× D'où, par transitivité :

$$\left| \sum_{k=0}^{d} a_{d-k} \lambda^k \right| \leqslant \sum_{k=0}^{d} \left| a_{d-k} \lambda^k \right| < |\lambda|^{d+1}$$

En particulier : $\left| \sum_{k=0}^{d} a_{d-k} \lambda^{k} \right| \neq |\lambda|^{d+1}$.

On en déduit que si $|\lambda| > 1$, alors λ n'est pas valeur propre de A.

Commentaire

Il a été démontré :

- en question 15.b) que 1 est valeur propre de A,
- en question 15.c) que -1 et tous les réels λ tels que $|\lambda| > 1$ ne sont pas valeurs propres de A. On peut donc en déduire à ce stade que les valeurs propres μ de A différentes de 1 doivent vérifier : $|\mu| < 1$.

16. On pose pour tout $k \in [0, d]$, $b_k = \sum_{i=k}^d a_i$. On définit aussi le sous-espace vectoriel H de $\mathcal{M}_{d+1,1}(\mathbb{R})$

formé des matrices
$$W = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{pmatrix}$$
 telles que $\sum_{k=0}^d b_k \, w_k = 0$.

a) Démontrer, pour tout $W \in H : AW \in H$.

 $D\'{e}monstration.$

Soit
$$W = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{pmatrix} \in H$$
.

• Tout d'abord :

$$AW = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{d-2} & a_{d-1} & a_d \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \ddots & & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_{d-1} \\ w_d \end{pmatrix} = \begin{pmatrix} \sum_{k=0}^d a_k w_k \\ w_0 \\ w_1 \\ \vdots \\ \vdots \\ w_{d-1} \\ w_{d-1} \\ w_{d-1} \end{pmatrix}$$

• Pour démontrer que $AW \in H$, il faut donc vérifier :

$$b_0 \sum_{k=0}^{d} a_k w_k + \sum_{k=1}^{d} b_k w_{k-1} = 0$$

× On commence par remarquer:

$$b_0 = \sum_{k=0}^d a_k = 1$$
 (démontré en 15.b))

Donc:

$$b_0 \sum_{k=0}^{d} a_k w_k + \sum_{k=1}^{d} b_k w_{k-1} = \sum_{k=0}^{d} a_k w_k + \sum_{k=1}^{d} b_k w_{k-1}$$

$$= \sum_{k=0}^{d} a_k w_k + \sum_{k=0}^{d-1} b_{k+1} w_k \qquad (par \ decalage \ d'indice)$$

$$= \left(\sum_{k=0}^{d-1} a_k w_k + a_d w_d\right) + \sum_{k=0}^{d-1} b_{k+1} w_k$$

$$= \sum_{k=0}^{d-1} (a_k + b_{k+1}) w_k + a_d w_d$$

 \times Soit $k \in [0, d-1]$.

$$a_k + b_{k+1} = a_k + \sum_{i=k+1}^d a_i = \sum_{i=k}^d a_i = b_k$$

De plus:

$$b_d = \sum_{i=d}^d a_i = a_d$$

× On en déduit :

$$b_0 \sum_{k=0}^{d} a_k w_k + \sum_{k=1}^{d} b_k w_{k-1} = \sum_{k=0}^{d-1} (a_k + b_{k+1}) w_k + a_d w_d$$

$$= \sum_{k=0}^{d-1} b_k w_k + b_d w_d$$

$$= \sum_{k=0}^{d} b_k w_k$$

$$= 0 \qquad (car W \in H)$$

On en conclut : $AW \in H$.

Finalement :
$$\forall W \in H, AW \in H$$
.

b) Déterminer l'unique réel s tel que : $U_0 - sV \in H$.

Démonstration.

Soit $s \in \mathbb{R}$.

• Tout d'abord, d'après 15.b) :

$$U_0 - s V = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} - s \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - s \\ -s \\ \vdots \\ -s \end{pmatrix}$$

• Alors, par définition de H:

$$U_0 - sV \in H \Leftrightarrow b_0 (1 - s) - \sum_{k=1}^d b_k s = 0$$

$$\Leftrightarrow b_0 - s b_0 - s \sum_{k=1}^d b_k = 0$$

$$\Leftrightarrow b_0 - s \left(b_0 + \sum_{k=1}^d b_k\right) = 0$$

$$\Leftrightarrow b_0 - s \sum_{k=0}^d b_k = 0$$

$$\Leftrightarrow 1 = s \sum_{k=0}^d b_k \qquad (car, d'après un calcul en question précédente : b_0 = 1)$$

$$\Leftrightarrow \frac{1}{\sum_{k=0}^d b_k} = s \qquad (car : \sum_{k=0}^d b_k \neq 0)$$

Détaillons ce dernier argument. Soit $k \in [0, d]$.

$$b_k = \sum_{i=k}^{d} a_i > 0 \quad (car : \forall i \in [0, d], \ a_i > 0)$$

Ainsi : $\sum_{k=0}^{d} b_k > 0$. En particulier : $\sum_{k=0}^{d} b_k \neq 0$.

Finalement,
$$s = \frac{1}{\sum\limits_{k=0}^{d} b_k}$$
 est l'unique réel tel que : $U_0 - sV \in H$.

c) Nous admettons que, pour tout $W \in H$, $LA^n W \to 0$ quand $n \to +\infty$. En déduire : $\lim_{n \to +\infty} z_n = s$.

Démonstration.

• Tout d'abord, d'après 13.b), pour tout $n \in \mathbb{N}$:

$$z_{n+1} = L A^n U_0$$

• On sait de plus, d'après le résultat admis dans cette question, que pour tout $W \in H$: $LA^n W \xrightarrow[n \to +\infty]{} 0$.

On cherche donc à faire apparaître un tel vecteur W. Or ce vecteur nous est donné en question précédente, c'est : $U_0 - sV$ (où $s = \frac{1}{\sum_{k=0}^d b_k}$). On écrit alors :

$$z_{n+1} = L A^{n} U_{0}$$

$$= L A^{n} (U_{0} - sV + sV)$$

$$= L A^{n} (U_{0} - sV) + sL A^{n} V$$

• De plus, d'après la question 15.b), le vecteur V est un vecteur propre de A associé à la valeur propre 1. Ainsi : AV = V. Par récurrence immédiate : $\forall n \in \mathbb{N}, A^n V = V$.

• Soit $n \in \mathbb{N}$. On obtient :

$$z_{n+1} = L A^n (U_0 - s V) + s L V$$

Or:

$$LV = (a_0 \ a_1 \ \cdots \ a_{d-1} \ a_d) \begin{pmatrix} 1\\1\\\vdots\\1\\1 \end{pmatrix} = \sum_{k=0}^d a_k = 1$$

Ainsi:

$$z_{n+1} = L A^n (U_0 - s V) + s$$

• Enfin, d'après l'énoncé, comme $(U_0 - sV) \in H$, alors : $LA^n(U_0 - sV) \underset{n \to +\infty}{\longrightarrow} 0$. D'où :

$$\lim_{n \to +\infty} z_{n+1} = 0 + s = s$$

On en déduit :
$$\lim_{n \to +\infty} z_n = \lim_{n \to +\infty} z_{n+1} = s$$
.

Commentaire

Revenons sur la propriété admise par l'énoncé :

$$\forall W \in H, \quad L A^n W \xrightarrow[n \to +\infty]{} 0_{\mathcal{M}_1(\mathbb{R})}$$

- On énonce ici un résultat de convergence sur la suite de **matrices** $(L A^n W)_{n \in \mathbb{N}}$. Ces matrices appartiennent à $\mathcal{M}_1(\mathbb{R})$. Ainsi, avec l'identification entre \mathbb{R} et $\mathcal{M}_1(\mathbb{R})$ suggérée par l'énoncé, on comprend que la définition de convergence à avoir en tête est celle d'une suite de **réels**. En identifiant \mathbb{R} et $\mathcal{M}_1(\mathbb{R})$, l'énoncé peut ainsi se passer d'introduire la notion de convergence pour une suite de matrices, qui ne fait pas partie du programme ECE.
- Pour mieux comprendre cette identification, explicitons la définition de convergence pour une suite de matrices.

Soit
$$(A_n)_{n\in\mathbb{N}}$$
 une suite de $\mathscr{M}_{p,q}(\mathbb{R})$. Pour tout $n\in\mathbb{N}$, on note : $A_n=\left(a_{i,j}^{(n)}\right)_{\substack{i\in [\![1,p]\!]\\j\in [\![1,q]\!]}}$.

Soit
$$B \in \mathcal{M}_{p,q}(\mathbb{R})$$
. On note : $B = (b_{i,j})_{\substack{i \in [1,p] \\ j \in [1,q]}}$.

On dit que la suite (A_n) converge vers B si :

$$\forall (i,j) \in [1,p] \times [1,q], \quad a_{i,j}^{(n)} \underset{n \to +\infty}{\longrightarrow} b_{i,j}$$

Autrement dit la suite de **matrices** (A_n) converge vers B si, pour tout $(i, j) \in [1, p] \times [1, q]$, la suite **réelle** $(a_{i,j}^{(n)})$ converge vers $b_{i,j}$.

Comme les matrices de la suites (LA^nW) appartiennent à $\mathcal{M}_1(\mathbb{R})$, dire que (LA^nW) converge vers la matrice $0_{\mathcal{M}_1(\mathbb{R})}$ est équivalent à dire que la suite des uniques coefficients de LA^nW converge vers l'unique coefficient de $0_{\mathcal{M}_1(\mathbb{R})}$, c'est-à-dire :

$$(L\,A^n\,W)_{1,1} \underset{n \to +\infty}{\longrightarrow} \left(0_{\mathscr{M}_1(\mathbb{R})}\right)_{1,1} \qquad \text{ou encore} \qquad (L\,A^n\,W)_{1,1} \underset{n \to +\infty}{\longrightarrow} 0$$

On retrouve bien une convergence de suite réelle. Plus précisément, la suite réelle $((L\,A^n\,W)_{1,1})_{n\in\mathbb{N}}$ converge vers le réel 0.

17. Sous quelle(s) hypothèse(s), parmi les trois hypothèses (H_1) , (H_2) et (H_3) faites dans cette partie, la série $\sum_{n=0}^{+\infty} z_n$ est-elle convergente? Comment interpréter ce résultat?

Commentaire

La formulation « $\sum_{n=0}^{+\infty} z_n$ est-elle convergente? » est malheureuse pour deux raisons :

- on ne peut écrire le symbole $\sum_{n=0}^{+\infty}$ qu'après avoir démontré la convergence de la série correspondante ;
- l'énoncé fait ici une confusion entre la **série** $\sum_{n\geqslant 0} z_n$ et la **somme** $\sum_{n=0}^{+\infty} z_n$.

On insiste sur le fait que la somme d'une série n'est bien définie que si cette série est convergente. La somme d'une série étant un réel, il n'y a aucun sens à parler de sa convergence (et donc aucun sens à demander de l'étudier).

Il faut donc lire cette question de la façon suivante : « Sous quelle(s) hypothèse(s), parmi les trois hypothèses (H_1) , (H_2) et (H_3) faites dans cette partie, la série $\sum_{n\geq 0} z_n$ est-elle convergente ? »

Démonstration.

• Sous l'hypothèse (H_1) , on sait :

× d'après la question 12.b) : $\forall n \ge N, z_n \le M \theta^n$. On a de plus démontré en 12.c) : $\forall n \in \mathbb{N}, z_n \ge 0$. Ainsi :

$$\forall n \geqslant N, \quad 0 \leqslant z_n \leqslant M \theta^n$$

 \times la série $\sum_{n\geq 0} \theta^n$ est une série géométrique de raison $\theta\in]-1,1[$. Elle est donc convergente.

Et la série $\sum_{n>0} M \theta^n$ aussi.

(on ne change pas la nature d'une série en multipliant son terme général par un réel non nul)

Par critère de comparaison des séries à termes positifs, sous l'hypothèse (H_1) , la série $\sum_{n\geqslant 0}z_n$ est convergente.

• Sous l'hypothèse (H_2) , on sait d'après l'énoncé : $\lim_{n\to+\infty}z_n=+\infty$. En particulier : $\lim_{n\to+\infty}z_n\neq 0$.

On en déduit que, sous l'hypothèse (H_2) , la série $\sum_{n\geqslant 0}z_n$ est grossièrement divergente.

• Sour l'hypothèse (H_3) , on sait d'après la question précédente : $\lim_{n\to+\infty}z_n=s$.

Or : $s = \frac{1}{\sum\limits_{k=0}^d b_k}$. Et on a déjà démontré en question 16.b) : $\sum\limits_{k=0}^d b_k > 0$. Ainsi : s > 0.

D'où : $\lim_{n \to +\infty} z_n \neq 0$.

On en déduit que, sous l'hypothèse (H_3) , la série $\sum_{n\geqslant 0} z_n$ est grossièrement divergente.

- Essayons d'interprêter la convergence de la série $\sum_{n\geqslant 0} z_n$.
 - × Pour cela, pour tout $n \in \mathbb{N}$, on note : $S_n = \sum_{k=0}^n z_k$.

Pour tout $k \in \mathbb{N}$, z_k est, d'après la **Partie 2**, le nombre moyen d'individus infectés le jour k. Ainsi, S_n est le nombre moyen d'individus infectés depuis le début de la contamination jusqu'au jour n.

- × Ainsi, si la série $\sum_{n\geq 0} z_n$ est convergente (on note $S = \sum_{k=0}^{+\infty} z_k$ sa somme), alors le nombre moyen d'individus infectés depuis de l'épidémie est majorée par S. En effet :
 - si la série $\sum_{n\geq 0} z_n$ est convergente de somme S, alors : $S_n \xrightarrow[n \to +\infty]{} S$.
 - comme $\sum_{n\geq 0} z_n$ est à termes positifs, alors la suite (S_n) est croissante.

On en déduit : $\forall n \in \mathbb{N}, S_n \leqslant S$.

 \times Si le nombre moyen d'individus infectés depuis le début de l'infection est majoré, cela signifie qu'il existe un jour (notons le n_0) à partir duquel plus aucun individu n'est infecté. Autrement dit, la contamination s'arrête. Elle s'arrête même en un nombre fini de jours : n_0 .

On en déduit que, sur les trois hypothèses étudiées, la contamination s'éteint en un nombre fini de jours seulement sous l'hypothèse (H_1) .

Commentaire

• Revenons sur la conclusion : $\forall n \in \mathbb{N}, S_n \leq S$. Elle provient de la propriété générale suivante sur les suites croissantes convergentes. Soit (u_n) une suite réelle.

$$\begin{pmatrix} (u_n) \text{ croissante} \\ u_n \to \ell \in \mathbb{R} \end{pmatrix} \Rightarrow \forall n \in \mathbb{N}, \ u_n \leqslant \ell$$

Il s'agit d'une propriété classique sur les suites croissantes qu'il faut savoir redémontrer. Détaillons cette démonstration.

Supposons que:

 \times la suite (u_n) est croissante,

 \times la suite (u_n) converge vers ℓ .

On procède par l'absurde.

Supposons : NON($\forall n \in \mathbb{N}, u_n \leq \ell$). Autrement dit, il existe $n_0 \in \mathbb{N}$ tel que $u_{n_0} > \ell$.

- La suite (u_n) étant croissante, on a :

$$\forall n \geqslant n_0, \quad u_n \geqslant u_{n_0}$$

Par passage à la limite dans cette inégalité, on obtient : $\ell \geqslant u_{n_0}$.

- On en déduit alors avec la définition de $n_0: \ell \geqslant u_{n_0} > \ell$.

Absurde!

• Il est bien sûr possible d'énoncer une propriété similaire pour les suites décroissantes convergentes. Soit (u_n) une suite réelle.

$$\begin{pmatrix} (u_n) \text{ décroissante} \\ u_n \to \ell \in \mathbb{R} \end{pmatrix} \Rightarrow \forall n \in \mathbb{N}, \ u_n \geqslant \ell$$