ESSEC I 2021

Dans ce problème, on s'intéresse à un modèle, inspire du modèle de Cori, de propagation d'un virus au sein d'une population.

La partie 1 introduit des outils théoriques permettant de définir et d'étudier ce modèle.

Les parties 2 et 3 concernent cette étude. Si l'on fait abstraction des définitions, des notations et de la question 17, la partie 3 est indépendante des parties 1 et 2.

Partie 1 - Lois composées

On considère :

- un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et J un sous-ensemble non vide de \mathbb{R}^+ ;
- une variable aléatoire Y sur cet espace à valeurs dans J.
- une famille $(X_t)_{t\in J}$ de variables aléatoires sur cet espace à valeurs dans \mathbb{N} et indépendantes de Y telles que pour tout $t\in J$:

$$X_t$$
 suit la loi $\mu(t)$

 $\mu(t)$ désignant une loi de probabilité de paramètre t.

On définit la variable aléatoire Z sur cet espace par :

$$\forall \omega \in \Omega$$
, si $Y(\omega) = t$ alors $Z(\omega) = X_t(\omega)$

et on dit que Z suit la loi $\mu(Y)$.

On considère dans cette partie une telle variable Z qui suit la loi $\mu(Y)$. Pour tout $k \in \mathbb{N}$, on définit aussi la fonction f_k de J dans [0,1] par :

$$f_k(t) = \mathbb{P}([X_t = k])$$

1. Un exemple avec Scilab. On considère le script Scilab suivant :

```
function r = X(t)
function r = X(t)
function r = X(t)
function
functio
```

En considérant les notations précédentes avec J =]0,1[et en notant Y la variable aléatoire dont Y est une simulation, compléter le script précédent pour que Z soit une simulation d'une variable aléatoire qui suit la loi géometrique $\mathcal{G}(Y)$.

- Cas où Y est discrète. On suppose dans les questions 2. et 3. que Y est discrète.
- 2. a) Soit $y \in Y(\Omega)$. Montrer que, pour tout $k \in \mathbb{N}$:

$$\mathbb{P}([Z=k] \cap [Y=y]) = f_k(y) \, \mathbb{P}([Y=y])$$

et si $\mathbb{P}([Y=y]) \neq 0$:

$$\mathbb{P}_{[Y=y]}([Z=k]) = f_k(y)$$

b) En déduire :

$$\mathbb{P}([Z=k]) = \mathbb{E}(f_k(Y)) \qquad (1)$$

c) Un exemple où $J = \mathbb{N}^*$. Soit $p \in]0,1[$. Si pour tout $n \in \mathbb{N}^*$, X_n suit la loi uniforme sur $[\![1,n]\!]$ et si la loi de Y est définie par, pour tout $n \in \mathbb{N}^*$:

$$\mathbb{P}([Y = n]) = n p^2 (1 - p)^{n-1}$$

montrer que Z suit la loi géométrique de paramètre p.

- 3. On suppose que pour tout $t \in J$, $\mathbb{E}(X_t)$ existe. On note g(t) cette espérance et on suppose que $\mathbb{E}(g(Y))$ existe.
 - a) Démontrer :

$$\mathbb{E}(g(Y)) = \sum_{y \in Y(\Omega)} \left(\sum_{k=0}^{+\infty} k f_k(y) \, \mathbb{P}([Y=n]) \right)$$

b) En admettant que l'on peut inverser l'ordre des sommes, montrer que $\mathbb{E}(Z)$ existe et :

$$\mathbb{E}(Z) = \mathbb{E}(g(Y)) \qquad (2)$$

- On admet que les resultats établis dans les questions 2. et 3., en particulier (1) et (2), sont encore vrais lorsque Y n'est plus discrète.
- 4. Un premier exemple. On suppose que J =]0, 1[, que la loi de X_t est la loi géométrique de paramètre t et que Y suit la loi uniforme sur]0, 1[.
 - a) Montrer que pour tout $k \in \mathbb{N}^*$, $\mathbb{P}([Z=k]) = \frac{1}{k(k+1)}$. La variable aléatoire Z admet-elle une espérance?
 - b) Que vaut $\mathbb{E}(X_t)$ en fonction de t? Si l'on note g cette fonction de t, que peut-on dire de $\mathbb{E}(g(Y))$?
- 5. Un deuxième exemple. On suppose que $J = [0, +\infty[$, que la loi de X_t est la loi de Poisson de paramètre t et que Y suit la loi exponentielle de paramètre $\lambda > 0$. Par suite, Z suit la loi $\mathcal{P}(Y)$.

Par convention, la loi de Poisson de paramètre 0 est la loi de la variable aléatoire nulle.

a) Démontrer, pour tout $k \in \mathbb{N}$:

$$\mathbb{P}([Z=k]) = \int_0^{+\infty} \frac{t^k}{k!} \lambda e^{-(\lambda+1)t} dt = \frac{\lambda}{(\lambda+1)^{k+1}} \int_0^{+\infty} \frac{x^k}{k!} e^{-x} dx$$

b) En raisonnant par récurrence sur $k \in \mathbb{N}$, justifier que pour tout $k \in \mathbb{N}$:

$$\int_0^{+\infty} \frac{x^k}{k!} e^{-x} dx = 1$$

- c) Déterminer la loi de Z. Reconnaître la loi de Z+1.
- d) En déduire $\mathbb{E}(Z)$. Ce résultat est-il cohérent avec l'egalite (2)?

Partie 2 - Le modèle de Cori

On considère une population d'effectif infini dans laquelle un individu donné est infecté le jour 0 par un virus contagieux.

Soit $d \in \mathbb{N}^*$. On suppose que :

- tout individu infecté par le virus est immédiatement contagieux et sa contagiosité ne dure que (d+1) jours, du jour n où il est infecté jusqu'au jour (n+d) $(n \in \mathbb{N})$;
- une fois infectés, les individus présentent un même profil de contagiosité donné par un (d+1)-uplet $(\alpha_0, \alpha_1, \dots, \alpha_d)$ qui dépend généralement de facteurs biologiques.

Pour tout $k \in [0, d]$, on dit que α_k est la contagiosité de tout individu ayant éte infecté k jours plus tôt.

Autrement dit, on peut considérer que α_k , lié à la nature du virus, détermine la proportion d'individus contaminés par un individu infecté, parmi tous ceux avec lesquels il est en contact k jours après sa contamination.

Finalement, les réels $\alpha_0, \alpha_1, \ldots, \alpha_d$ sont tels que, pour tout $k \in [0, d], \alpha_k \in]0, 1[$ et on note $\alpha = \sum_{k=0}^d \alpha_k$, ce qui signifie que α est la contagiosité globale d'un individu infecté sur toute la période où il est infecté. On utilise les notations et définitions de la partie 1 avec $J = \mathbb{R}^+$.

On suppose que les variables aléatoires qui interviennent par la suite sont définies sur l'espace $(\Omega, \mathscr{A}, \mathbb{P})$.

- Pour tout $n \in \mathbb{N}$, on note R_n la variable aléatoire qui désigne le nombre moyen de contacts réalisés le jour n par un individu contagieux ce jour-là.
 - On suppose, pour tout $n \in \mathbb{N}$, l'existence de $\mathbb{E}(R_n)$ et on pose $r_n = \mathbb{E}(R_n)$.
- Pour tout $n \in \mathbb{N}$, on note Z_n la variable aléatoire égale au nombre total d'individus qui sont infectés et donc deviennent contagieux le n-ième jour. Par exemple, $Z_0 = 1$.
- Pour tout $n \in \mathbb{N}$, on note I_n la variable aléatoire égale à la contagiosité globale de la population le n-ième jour, définie par :

$$I_n = \sum_{k=0}^{\min(n,d)} \alpha_k Z_{n-k} \qquad (*)$$

• On suppose enfin que, pour tout $n \in \mathbb{N}$, I_n et R_n sont indépendantes et que si l'on pose $Y_n = R_n I_n$, on a :

$$Z_{n+1}$$
 suit la loi $\mathcal{P}(Y_n)$

où \mathcal{P} désigne la loi de Poisson. Ainsi la loi de Z_{n+1} ne dépend que des lois de R_n et de I_n .

- 6. Donner une justification de (*).
- 7. a) Soit $n \in \mathbb{N}$. On suppose que $\mathbb{E}(I_n)$ existe. Montrer que $\mathbb{E}(Y_n)$ existe et en utilisant un résultat de la partie 1, montrer que $\mathbb{E}(Z_{n+1})$ existe et vaut $r_n \mathbb{E}(I_n)$.
 - b) Montrer que pour tout $n \in \mathbb{N}$, $z_n = \mathbb{E}(Z_n)$ existe et vérifie la relation de récurrence :

$$z_{n+1} = r_n \sum_{k=0}^{\min(n,d)} \alpha_k z_{n-k}$$
 (3)

8. Programmation de z_n avec Scilab.

On suppose que la suite $(r_n)_{n\in\mathbb{N}}$ vérifie, pour tout $n\in\mathbb{N}$, $r_n=\frac{n+2}{n+1}$.

On note Δ la matrice ligne $(\alpha_0 \cdots \alpha_d)$.

Écrire une fonction **Scilab** d'entête function r = z(Delta,n) qui calcule z_n si Delta représente la matrice ligne Δ .

9. Soit $(U_n)_{n\geqslant 0}$, $(V_n)_{n\geqslant 0}$, deux suites d'événements tels que $\lim_{n\to +\infty} \mathbb{P}(U_n) = \lim_{n\to +\infty} \mathbb{P}(V_n) = 1$. Montrer que $\lim_{n\to +\infty} \mathbb{P}(U_n\cap V_n) = 1$.

- On rappelle que l'on dit qu'un événement A est presque sûr lorsque $\mathbb{P}(A)=1$.
- 10. On note pour tout $n \in \mathbb{N}^*$, $A_n = \bigcap_{k=n}^{+\infty} [Z_k = 0]$ et B l'événement « la contamination s'éteint au bout d'un nombre fini de jours ».
 - a) Démontrer : $\mathbb{P}(B) = \lim_{n \to +\infty} \mathbb{P}(A_n)$.
 - **b**) En distinguant les cas où $\mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k=0]\right)$ est nulle ou pas, établir, pour tout $p\geqslant d$:

$$\mathbb{P}\left(\bigcap_{k=n}^{n+p} [Z_k = 0]\right) = \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$$

puis :
$$\mathbb{P}(A_n) = \mathbb{P}\left(\bigcap_{k=n}^{n+d} [Z_k = 0]\right)$$
.

- c) En déduire que B est presque sûr si et seulement si $\lim_{n\to+\infty} \mathbb{P}([Z_n=0])=1$.
- d) Montrer que cela équivaut aussi au fait que $(Z_n)_{n\in\mathbb{N}}$ converge en loi vers 0.
- 11. a) Montrer, en utilisant un résultat de la partie 1, que pour tout $n \in \mathbb{N}$:

$$\mathbb{P}([Z_{n+1}=0]) = \mathbb{E}(e^{-Y_n})$$

b) On suppose que $\lim_{n\to+\infty} z_n = 0$. En déduire que B est presque sûr (on pourra montrer que pour tout x reel, $e^{-x} \ge 1 - x$).

Partie 3 - Limite du nombre moyen de contaminations journalières

Dans cette partie, on conserve les notations de la partie 2 et on s'intéresse au comportement asymptotique de la suite $(z_n)_{n\in\mathbb{N}}$, definie par la relation (3) et $z_0=1$, sous trois hypothèses différentes concernant la suite $(r_n)_{n\in\mathbb{N}}$.

Pour tout réel x, on identifie x et la matrice carrée d'ordre 1 dont l'unique coefficient est x.

Pour tout $k \in \llbracket 0, d \rrbracket$, on pose $a_k = \frac{\alpha_k}{\alpha}$

- 12. On suppose, dans cette question, qu'il existe $N \in \mathbb{N}$ et $\rho \in]0,1[$ tels que, pour tout $n \geqslant N, r_n \alpha \leqslant \rho$. On note (H_1) cette hypothese.
 - a) Que vaut $\lim_{t\to 1} \sum_{k=0}^d a_k t^{d-k}$?

En déduire qu'il existe $\theta \in]0,1[$ tel que $\theta^{d+1} \geqslant \rho\left(\sum_{k=0}^{d} a_k \theta^{d-k}\right)$ (on pourra raisonner par l'absurde).

- On pose $M = \max_{k \in \llbracket N, N + d \rrbracket} \frac{z_k}{\theta^k}$.
- **b)** Démontrer, pour tout $n \ge N : z_n \le M \theta^n$.
- c) En déduire : $\lim_{n\to+\infty} z_n = 0$.

On montrerait de même que s'il existe $N \in \mathbb{N}$ et $\rho > 1$ tels que, pour tout $n \geqslant N$, $r_n \alpha \geqslant \rho$, on a $\lim_{n \to +\infty} z_n = +\infty$. On note (H_2) cette hypothèse.

• On suppose, dans les questions 13. à 16., que la suite $(r_n)_{n\in\mathbb{N}}$ est constante de valeur $\frac{1}{\alpha}$. On note (H_3) cette hypothèse.

On pose pour tout $n \in \mathbb{N}$:

$$U_n = \begin{pmatrix} z_n \\ z_{n-1} \\ \vdots \\ z_{n-d} \end{pmatrix}$$

avec $z_{-1} = \ldots = z_{-d} = 0$.

- 13. a) Montrer quil existe une matrice A carrée d'ordre d+1, de première ligne $L=\begin{pmatrix} a_0 & \cdots & a_d \end{pmatrix}$, telle que pour tout $n \in \mathbb{N}$, $U_{n+1} = AU_n$.
 - b) En déduire que, pour tout $n \ge 0$, $U_n = A^n U_0$ puis que $z_{n+1} = L A^n U_0$.
- 14. Dans cette question, d=2 et $L=\begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \end{pmatrix}$.
 - a) Démontrer : $Sp(A) = \{1, -\frac{1}{2}, -\frac{1}{3}\}.$
 - b) Déterminer une base (V_1, V_2, V_3) de $\mathcal{M}_{3,1}(\mathbb{R})$, où V_1 est un vecteur colonne propre de A pour la valeur propre 1, V_2 pour $-\frac{1}{2}$, V_3 pour $-\frac{1}{3}$, ces colonnes ayant leur premier coefficient égal a 1.
 - c) Déterminer $(s_1, s_2, s_3) \in \mathbb{R}^3$, tel que $U_0 = s_1 V_1 + s_2 V_2 + s_3 V_3$.
 - d) En déduire que la suite $(z_n)_{n\in\mathbb{N}}$ converge vers s_1 .
- 15. On revient au cas général.
 - a) Montrer que $\lambda \in \operatorname{Sp}(A)$ si et seulement si $\lambda^{d+1} = \sum_{k=0}^{d} a_{d-k} \lambda^k$ et que les sous-espaces propres de A sont de dimension 1.
 - b) Montrer que 1 est valeur propre de A et déterminer le vecteur colonne propre associé V dont la somme des composantes vaut d+1.
 - c) Établir que $-1 \notin \operatorname{Sp}(A)$ et que si $|\lambda| > 1$, alors $\lambda \notin \operatorname{Sp}(A)$.
- 16. On pose pour tout $k \in [0, d]$, $b_k = \sum_{i=k}^d a_i$. On définit aussi le sous-espace vectoriel H de $\mathcal{M}_{d+1,1}(\mathbb{R})$

formé des matrices
$$W = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{pmatrix}$$
 telles que $\sum_{k=0}^d b_k \, w_k = 0$.

- a) Démontrer, pour tout $W \in H : AW \in H$.
- b) Déterminer l'unique réel s tel que : $U_0 sV \in H$.
- c) Nous admettons que, pour tout $W \in H$, $LA^n W \to 0$ quand $n \to +\infty$.
- d) En déduire : $\lim_{n\to+\infty} z_n = s$.
- 17. Sous quelle(s) hypothèse(s), parmi les trois hypothèses (H_1) , (H_2) et (H_3) faites dans cette partie, la série $\sum_{n=0}^{+\infty} z_n$ est-elle convergente? Comment interpréter ce résultat?