TP7: Méthodes d'inversion

▶ Dans votre dossier Info_2a, créer le dossier TP_7.

I. Avant-propos

Dans ce TP, on s'intéresse au problème suivant.

Données:

- \times une v.a.r. X a priori difficile à simuler informatiquement,
- \times la fonction de répartition F de la v.a.r. X.

But

obtenir une v.a.r. V de même fonction de répartition F (*i.e.* de même loi que X) plus simple à simuler informatiquement.

▶ Rappeler les propriétés qui caractérisent une fonction de répartition.

Une fonction $F: \mathbb{R} \to [0,1]$ (0 et 1 pas forcément atteints) est la fonction de répartition d'une v.a.r. X si :

On peut montrer de plus que F admet une limite finie à gauche en tout point $x \in \mathbb{R}$. Plus précisément : $\forall x \in \mathbb{R}$, $\lim_{\substack{t \to x \\ t < x}} F(t) = F(x) - \mathbb{P}([X = x]) = \mathbb{P}([X < x])$

II. Théorème d'inversion dans le cas où F est bijective

II.1. Énoncé du théorème d'inversion

Théorème 1.

Soit X une v.a.r. dont la loi est donnée par sa fonction de répartition $F : \mathbb{R} \to]0,1[$. Soit U une v.a.r. telle que $U \hookrightarrow \mathcal{U}([0,1])$.

On suppose de plus que :

- \times F est continue sur \mathbb{R} ,
- \times F est strictement croissante sur \mathbb{R} .

On a alors:

- F est bijective de \mathbb{R} dans]0,1[.
- La v.a.r. $V = F^{-1}(U)$ a pour fonction de répartition F.

tappeler la fonction de répartition d'une v.a.r. U telle que U	$U \hookrightarrow \mathcal{U}([0,1]).$
Démontrer le résultat du théorème.	
• La fonction F est :	
Elle réalise donc une bijection de] $-\infty, +\infty$ [sur $F(]$ -	$\infty, +\infty[$). Or :
a j / · f //	,
Note C by formation denote the C by $E^{-1}(U)$	
• Notons G la fonction de répartition de la v.a.r. $F^{-1}(U)$ Autrement dit, pour tout $x \in \mathbb{R}$, on a : $G(x) = \mathbb{P}($).
Soit $x \in \mathbb{R}$ et $\omega \in \Omega$, remarquons tout d'abord que :	
$\omega \in \left[F^{-1}(U) \right] \leqslant \sigma$	c
$\Leftrightarrow F^{-1}(U(\omega)) \leqslant x$	
\Leftrightarrow	
$\Leftrightarrow \omega \in$	
Ainsi, on a : $G(x) =$	

II.2. Application : simulation de lois à l'aide de rand

II.2.a) Loi uniforme sur un intervalle réel

On considère une v.a.r. X telle que $X \hookrightarrow \mathcal{U}([a,b])$ (où a et b deux réels tels que a < b).

▶ Que signifie que $X \hookrightarrow \mathcal{U}([a,b])$?

ightharpoonup Calculer la fonction de répartition F de X.

Soit $x \in \mathbb{R}$. Trois cas se présentent :

- $\operatorname{Si} x < a$:
- Si $x \in [a, b]$:

• $\operatorname{Si} x > b$:

▶ Démontrer que F réalise une bijection de [a,b] dans [0,1]. Déterminer sa bijection réciproque $G:[0,1] \to [a,b]$.

▶ On prolonge G en posant G(x) = a si x < 0 et G(x) = b si x > 1. Déterminer la loi de la v.a.r. V = G(U).

• Tout d'abord, d'après la question précédente :

$$V(\Omega) \ = \ \left(G(U) \right)(\Omega) \ = \ G \big(U(\Omega) \big) \ = \ G([0,1]) \ = \ [a,b]$$

- Soit $x \in \mathbb{R}$. Trois cas se présentent :
 - \times Si x < a, alors :

$\times \text{ Si } \underline{x} \in [\underline{a}, \underline{b}] :$
$\times \underline{\text{Si}}_x > \underline{b}$, alors:
Finalement: $F_V: x \mapsto \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } x \in [a,b] \\ 1 & \text{si } x > b \end{cases}$
b-a
On reconnaît la fonction de répartition d'une v.a.r. de loi $\mathcal{U}([a,b])$. Or la fonction de
répartition caractérise la loi. Ainsi : $V \hookrightarrow \mathcal{U}([a,b])$.
En déduire une simulation en Python d'une v.a.r. X telle que $X \hookrightarrow \mathcal{U}([a,b])$.
On écrira une fonction unifContinue qui :
× prend en paramètre deux réels a et b,
\times renvoie une variable v qui contient le résultat de la simulation de X .

On utilisera la fonction ${\tt rd.random}$ de la bibliothèque ${\tt random}$.

II.3.	Le théorème	d'inversion	aux	concours	(session	2015)

II.3.a)	Simulation	d'une	v.a.r.	suivant	une lo	exponentielle	(EML	2015)
---------	------------	-------	--------	---------	--------	---------------	------	------	---

Soit $\lambda>0$ et soit X une v.a.r. telle que $X\hookrightarrow\mathcal{E}\left(\lambda\right).$

>	Que	signifie	X	\hookrightarrow	\mathcal{E}	(λ)	?
-------------	-----	----------	---	-------------------	---------------	-------------	---

 $\blacktriangleright\,\,$ Déterminer la fonction de répartition F de X.

▶ Démontrer que F réalise une bijection de $[0, +\infty[$ dans [0, 1[. Déterminer sa bijection réciproque $G: [0, 1[\to [0, +\infty[$.

- lacktriangle On prolonge G en posant G(x)=0 si x<0. Déterminer la loi de la v.a.r. V=G(U).
 - Tout d'abord, d'après la question précédente :

$$V(\Omega) = (G(U))(\Omega) = G(U(\Omega)) = G([0,1]) = [0,+\infty[$$

- Soit $x \in \mathbb{R}$. Deux cas se présentent :
 - Si x < 0, alors :
 - Si $x \in [0, +\infty[$:

Finalement :
$$F_V : x \mapsto \begin{cases} 0 & \text{si } x < 0 \\ 1 - e^{-\lambda x} & \text{si } x \ge 0 \end{cases}$$

On reconnaît la fonction de répartition d'une v.a.r. de loi $\mathcal{E}(\lambda)$. Or la fonction de répartition caractérise la loi. Ainsi : $V \hookrightarrow \mathcal{E}(\lambda)$.

- ► En déduire une simulation en **Python** d'une v.a.r. X telle que $X \hookrightarrow \mathcal{E}(\lambda)$. On écrira une fonction expo qui :
 - × prend en paramètre un réel lambda,
 - \times renvoie une variable v qui contient le résultat de la simulation de X.

On utilisera la fonction rd.random.

Soit U une \imath	ctions de répa v.a.r. suivant			v.a.r. V = 0	$-\frac{1}{2}\ln(1-$
		 	•		λ `

 \blacktriangleright Ércire une fonction en **Python** qui, étant donné un réel λ strictement positif, simule la loi exponentielle de paramètre λ .

•	nulation d'un				·	2015)
	nction définie sur f que F est de f				,	$de \mathbb{R} sur]0,1[.$
	tire que F est le inue sur \mathbb{R} que s	-	_			mettant une densi i paramètre λ .
	maintenant que er la bijection re		la fonction l	7		
				•		

JE TEEL II TOTT-11	ce(-2, 2, 400) partie des nombr				ot(x,y), plt.	
					pace (2,2,100)	
Quel sera le rés	ultat de l'exécuti	on de ce progre	amme ?			
	able aléatoire sur			ervalle]0,1[.		
	able aléatoire sur de la variable a			ervalle]0,1[.		
				ervalle]0,1[.		
				ervalle]0,1[.		
				ervalle]0,1[.		
				ervalle]0,1[.		
				ervalle]0,1[.		
				ervalle]0,1[.		
				ervalle]0,1[.		
				ervalle]0,1[.		
				ervalle]0,1[.		