DS5 (version A)

Exercice 1 /46

On considère les matrices $A = \begin{pmatrix} 0 & 1 & 1 \\ -2 & 3 & 2 \\ 1 & -1 & 0 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

On note f l'endomorphisme de \mathbb{R}^3 dont A est la matrice relativement à la base canonique $\mathscr{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 et id l'endomorphisme identité de \mathbb{R}^3 dont la matrice est I.

- 1. a) Déterminer $(A-I)^2$.
 - 1 pt : $(A-I)^2 = 0_{M_3(\mathbb{R})}$
 - b) En déduire que A est inversible et écrire A^{-1} comme combinaison linéaire de I et de A.
 - 1 pt : $(A I)^2 = A^2 2A + I$ (car A et I commutent)
 - 1 pt : $A^{-1} = -A + 2I$
- 2. On pose A = N + I.
 - a) Exprimer pour tout entier naturel n, la matrice A^n comme combinaison linéaire de I et de N puis l'écrire comme combinaison linéaire de I et A.
 - 1 pt : $\forall k \geqslant 2, N^k = 0_{\mathscr{M}_3(\mathbb{R})}$ par récurrence immédiate
 - 1 pt : I et N commutent
 - 1 pt : Ecriture correcte du binôme de Newton + simplification de I^j
 - 1 pt : Découpage de la somme en deux (pour $n \ge 1$)
 - 1 pt : Utilisation de $N^k = 0_{\mathcal{M}_3(\mathbb{R})}$ pour $k \geqslant 2$ et fin du calcul : $A^n = I + nN$
 - 1 pt : Cas n = 0
 - 1 pt : $A^n = (1-n)I + nA$

0 pt à la question si la formule du binôme est fausse

- b) Vérifier que l'expression précédente est aussi valable pour n = -1.
 - 1 pt : $A^{-1} = -A + 2I$ et (1 (-1))I + (-1)A = -A + 2I

0 pt à la question si il est écrit $A^{-1}=(1-(-1))I+(-1)A=-A+2I$

- 3. a) Utiliser la première question pour déterminer la seule valeur propre de A.
 - 1 pt : $(X-1)^2$ polynôme annulateur de A donc $\mathrm{Sp}(A)\subset\{1\}$
 - 1 pt : (A I) est non inversible donc 1 est bien une valeur propre de A
 - $\boldsymbol{b})$ En déduire si A est ou n'est pas diagonalisable.

1^{ère} méthode : par l'absurde

- 0 pt : Ecriture correcte "A est diagonalisable"
- 1 pt : conclusion A=I, ce qui est faux, donc A n'est pas diagonalisable $2^{\rm \`eme}$ méthode : par le calcul des dimensions des espaces propres de A

• 1 pt :
$$E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}\right)$$

- 1 pt : $\dim(E_1(A)) = 2 < 3$ donc A n'est pas diagonalisable
- 4. On pose $u_1 = (f id)(e_1)$ et $u_2 = e_1 + e_3$.
 - a) Montrer que le rang de f id est égal à 1.

• 1 pt :
$$\operatorname{rg}(f - \operatorname{id}) = \operatorname{rg}(A - I) = \operatorname{rg}\left(\begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}\right)$$

• 1 pt :
$$\begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$
 est libre donc $rg(f - id) = 1$

b) Justifier que (u_1, u_2) est une base de Ker(f - id).

• 1 pt : Calcul de
$$\operatorname{Mat}_{\mathcal{B}}(u_1) = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

• 1 pt :
$$\operatorname{Mat}_{\mathcal{B}}((f - \operatorname{id})(u_1)) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 donc $u_1 \in \operatorname{Ker}(f - \operatorname{id})$

• 1 pt :
$$\operatorname{Mat}_{\mathcal{B}}((f - \operatorname{id})(u_2)) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 donc $u_2 \in \operatorname{Ker}(f - \operatorname{id})$

• 1 pt : Thm du rang
$$\implies \dim(\text{Ker}(f - \text{id})) = 2$$

• 1 pt :
$$(u_1, u_2)$$
 est libre

• 1 pt :
$$Card((u_1, u_2)) = 2 = dim(Ker(f - id))$$

5. a) Montrer que la famille (u_1, u_2, e_1) est une base de \mathbb{R}^3 .

• 1 pt : Application de
$$f$$
 – id pour obtenir $\lambda_3=0$

• 1 pt :
$$(u_1, u_2)$$
 est libre $\implies \lambda_1 = \lambda_2 = 0$

• 1 pt :
$$Card((u_1, u_2, e_1)) = 3 = dim(\mathbb{R}^3)$$

b) Déterminer la matrice T de f dans cette même base.

• 0,5 pt:
$$f(u_1) = 1u_1 + 0u_2 + 0e_1$$
 ou $Mat_{(u_1,u_2,e_1)}(f(u_1)) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

• 0,5 pt :
$$f(u_2) = 0u_1 + 1u_2 + 0e_1$$
 ou $Mat_{(u_1,u_2,e_1)}(f(u_2)) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

• 1 pt :
$$f(e_1) = 1u_1 + 0u_2 + 1e_1$$
 ou $Mat_{(u_1,u_2,e_1)}(f(e_1)) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

• 1 pt :
$$T = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 6. Soit la matrice $P = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$. Justifier l'inversibilité de P puis écrire la relation existant entre les matrices A, T, P et P^{-1} .
 - 1 pt : $rg(P) = rg\left(\begin{pmatrix} -1 & 1 & 1\\ 0 & -2 & -2\\ 0 & 0 & -2 \end{pmatrix}\right)$
 - 1 pt : la réduite obtenue est inversible (triangulaire supérieure + coefficients diagonaux non nuls)
 - 1 pt : Formule de changement de base : $\mathrm{Mat}_{\mathscr{B}}(f) = P_{\mathscr{B},(u_1,u_2,e_1)}\mathrm{Mat}_{(u_1,u_2,e_1)}(f)P_{(u_1,u_2,e_1),\mathscr{B}}$
 - 1 pt : On reconnait $A = \text{Mat}_{\mathscr{B}}(f), T = \text{Mat}_{(u_1, u_2, e_1)}(f)$ et $P = P_{\mathscr{B}, (u_1, u_2, e_1)}$
- 7. On note $(E_{1,1}, E_{1,2}, E_{1,3}, E_{2,1}, E_{1,2}, E_{2,3}, E_{3,1}, E_{3,2}, E_{3,3})$ la base canonique de $\mathcal{M}_3(\mathbb{R})$ et on rappelle que pour tout $(i, j) \in [1, 3]^2$, la matrice $E_{i,j}$ n'a que des coefficients nuls sauf celui situé à l'intersection de la $i^{\text{ème}}$ ligne et de la $j^{\text{ème}}$ colonne qui vaut 1.
 - a) Montrer que l'ensemble E des matrices M qui commutent avec T, c'est-à-dire des matrices vérifiant l'égalité MT = TM, est le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par la famille $(E_{1,1} + E_{3,3}, E_{1,2}, E_{1,3}, E_{2,2}, E_{2,3})$. Vérifier que la dimension de E est égale à 5.
 - 1 pt : écriture système associé à l'équation matricielle MT=TM
 - 1 pt : résolution système
 - 1 pt : $E = \text{Vect}(\mathcal{F})$ où $\mathcal{F} = (E_{1,1} + E_{3,3}, E_{1,2}, E_{1,3}, E_{2,2}, E_{2,3})$
 - 1 pt : \mathcal{F} est libre
 - 1 pt : \mathcal{F} est une base de E donc $\dim(E) = \operatorname{Card}(\mathcal{F}) = 5$
 - b) Soit N une matrice quelconque de $\mathcal{M}_3(\mathbb{R})$. Établir l'équivalence :

$$NA = AN \Leftrightarrow (P^{-1}NP)T = T(P^{-1}NP)$$

- 1 pt : Utilisation de $A = PTP^{-1}$
- 1 pt : multiplication à gauche par P^{-1} et à droite par P
- c) En déduire que l'ensemble F des matrices qui commutent avec A est le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par la famille $(P(E_{1,1}+E_{3,3})P^{-1}, PE_{1,2}P^{-1}, PE_{1,3}P^{-1}, PE_{2,2}P^{-1}, PE_{2,3}P^{-1})$.
 - 1 pt : $N \in F \iff (P^{-1}NP)T = T(P^{-1}NP) \iff (P^{-1}NP) \in E$
 - 1 pt : $N \in F \iff \exists (\lambda_1, \dots, \lambda_5) \in \mathbb{R}^5, P^{-1}NP = \lambda_1 \cdot (E_{1,1} + E_{3,3}) + \lambda_2 \cdot E_{1,2} + \lambda_3 \cdot E_{1,3} + \lambda_4 \cdot E_{2,2} + \lambda_5 \cdot E_{2,3}$
 - 1 pt: $N \in F \iff N \in \text{Vect}\left(P\left(E_{1,1} + E_{3,3}\right)P^{-1}, PE_{1,2}P^{-1}, PE_{1,3}P^{-1}, PE_{2,2}P^{-1}, PE_{2,3}P^{-1}\right)$

Exercice 2 /23

Dans tout cet exercice, f désigne la fonction définie sur $]0,+\infty[$ par :

$$\forall x \in]0, +\infty[, \ f(x) = x - \ln(x)$$

Partie I : Étude de la fonction f

- 1. Dresser le tableau de variations de f en précisant ses limites en 0 et en $+\infty$.
 - 1 pt : f dérivable sur $]0, +\infty[$ et $f'(x) = \frac{x-1}{x}$
 - 1 pt : $\lim_{x\to 0} f(x) = +\infty$
 - 1 pt : $\lim_{x \to +\infty} f(x) = +\infty$
- 2. Montrer que l'équation f(x) = 2, d'inconnue $x \in]0, +\infty[$, admet exactement deux solutions, que l'on note a et b, telles que 0 < a < 1 < b.
 - 2 pts : théorème de la bijection sur]0,1[
 - 1 pt : théorème de la bijection sur $]1,+\infty[$
 - 1 pt : $f(1) \neq 2$
- 3. Montrer: $b \in [2, 4]$. On donne: $\ln(2) \simeq 0, 7$.
 - 1 pt : $f(2) \le 2$
 - 1 pt : $f(4) \ge 2$
 - 1 pt : restriction de f à $]1,+\infty[$ strictement croissante sur $]1,+\infty[$

Partie II : Étude d'une fonction définie par une intégrale

On note Φ la fonction donnée par :

$$\Phi(x) = \int_{x}^{2x} \frac{1}{f(t)} dt$$

4. Montrer que Φ est bien définie et dérivable sur $]0, +\infty[$, et que l'on a :

$$\forall x \in]0, +\infty[, \ \Phi'(x) = \frac{\ln(2) - \ln(x)}{(x - \ln(x))(2x - \ln(2x))}$$

- 1 pt : $\frac{1}{f}$ admet une primitive G de classe \mathcal{C}^1 sur $]0,+\infty[$
- 1 pt : $\Phi(x) = G(2x) G(x)$
- 1 pt : Φ de classe \mathcal{C}^1 sur $]0,+\infty[$ (par composition)
- 1 pt : $\Phi'(x) = \frac{\ln(2) \ln(x)}{(x \ln(x))(2x \ln(2x))}$
- 5. En déduire les variations de Φ sur $]0, +\infty[$.
 - 1 pt : f(x) > 0 et f(2x) > 0
 - 1 pt : $\Phi'(x) > 0 \Leftrightarrow \ln(2) \ln(x) > 0 \Leftrightarrow x < 2$
- 6. Montrer: $\forall x \in [0, +\infty[, 0 \leq \Phi(x) \leq x]$.
 - 1 pt : $0 \leqslant \frac{1}{f(t)} \leqslant 1$ par décroissance de la fonction inverse sur $]0,+\infty[$
 - $1~\mathrm{pt}$: croissance de l'intégrale, les bornes étant dans l'ordre croissant
 - 1 pt : $0 \leqslant \Phi(x) \leqslant x$

7. a) Montrer que Φ est prolongeable par continuité en 0.

On note encore Φ la fonction ainsi prolongée. Préciser alors $\Phi(0)$.

- 1 pt : théorème d'encadrement
- **b)** Montrer: $\lim_{x\to 0} \Phi'(x) = 0$.

On admet que la fonction Φ est alors dérivable en 0 et que $\Phi'(0) = 0$.

- 1 pt

8. On donne $\Phi(2) \simeq 1$, 1 et on admet que $\lim_{x \to +\infty} \Phi(x) = \ln(2) \simeq 0$, 7. Tracer l'allure de la courbe représentative de la fonction Φ ainsi que la tangente à la courbe au point d'abscisse 0.

- 4 pts : 1 pt tangente en 0, 1 pt tangente en 2, 1 pt cohérence courbe Φ , 1 pt propreté

Problème /78

Le but du problème est l'étude du coefficient de corrélation linéaire de deux variables aléatoires qu'on aborde d'abord dans un cas particulier (Partie I), puis de façon générale (Partie II).

Partie I

1. Calculs préliminaires

a) On considère deux nombres entiers naturels q et n tels que $n \geqslant q$. En raisonnant par récurrence sur n, établir la formule suivante :

$$\sum_{k=q}^{n} \binom{k}{q} = \binom{n+1}{q+1}$$

- 1 pt: initialisation
- 2 pts : hérédité
- b) En faisant q=1, 2, 3, en déduire une expression factorisée des quatre sommes suivantes :

$$\sum_{k=1}^{n} k$$
 ; $\sum_{k=2}^{n} k(k-1)$; $\sum_{k=1}^{n} k^2$ et $\sum_{k=3}^{n} k(k-1)(k-2)$

- 1 pt : $\sum_{n=1}^{\infty} k = \frac{n(n+1)}{2}$
- 1 pt : $\sum_{k=1}^{n} k(k-1) = \frac{(n-1)n(n+1)}{3}$
- 1 pt : $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- 1 pt: $\sum_{k=1}^{n} k(k-1)(k-2) = \frac{(n-1)n(n+1)(n+2)}{4}$

On considère dans toute la suite de cette partie un nombre entier $n \ge 2$ et une urne contenant n jetons numérotés de 1 à n.

On extrait de cette urne successivement et sans remise 2 jetons et on désigne alors par :

- N_1 la variable aléatoire indiquant le numéro du premier jeton tiré,
- N_2 la variable aléatoire indiquant le numéro du second jeton tiré,
- X la variable aléatoire indiquant le plus petit des numéros des 2 jetons tirés,
- Y la variable aléatoire indiquant le plus grand des numéros des 2 jetons tirés.

On note $\mathbb{E}(N_1)$ et $\mathbb{V}(N_1)$, $\mathbb{E}(N_2)$ et $\mathbb{V}(N_2)$, $\mathbb{E}(X)$ et $\mathbb{V}(X)$, $\mathbb{E}(Y)$ et $\mathbb{V}(Y)$ les espérances et variances des quatre variables aléatoires N_1 , N_2 , X, Y.

- 2. Lois conjointe et marginales des variables aléatoires N_1 et N_2 .
 - a) Déterminer les probabilités $\mathbb{P}([N_1=i])$ pour tout $1\leqslant i\leqslant n$, et $\mathbb{P}_{[N_1=i]}([N_2=j])$ pour tout $1\leqslant j\leqslant n,\ j\neq i.$

En déduire : $\forall j \in [1, n]$, $\mathbb{P}([N_2 = j]) = \frac{1}{n}$. Puis comparer les lois de N_1 et N_2 .

- 2 pts:
 - × 1 pt : description expérience
 - × 1 pt : description v.a.r.

• 1 pt :
$$\mathbb{P}_{[N_1=i]}([N_2=j]) = \frac{1}{n-1}$$
 si $i \neq j$

• 3 pts :
$$\mathbb{P}([N_2 = j]) = \frac{1}{n}$$

× 1 pt : FPT sur (
$$[N_1 = i]$$
) $_{i \in \llbracket 1, n \rrbracket}$

$$\times$$
 1 pt : $\forall i \in [1, n], \mathbb{P}([N = i]) \neq 0$

- \times 1 pt : fin calcul
- 1 pt : N_1 et N_2 ont même loi 0 si $N_2(\Omega)$ n'est pas justifié
- b) Calculer les espérances $\mathbb{E}(N_1)$ et $\mathbb{E}(N_2)$, les variances $\mathbb{V}(N_1)$ et $\mathbb{V}(N_2)$.

• 1 pt :
$$\mathbb{E}(N_1) = \mathbb{E}(N_2) = \frac{n+1}{2}$$

• 1 pt :
$$\mathbb{V}(N_1) = \mathbb{V}(N_2) = \frac{n^2 - 1}{12}$$

c) Montrer, pour tout $1 \le i \le n$ et $1 \le j \le n$:

$$\mathbb{P}([N_1 = i] \cap [N_2 = j]) = \begin{cases} \frac{1}{n(n-1)} & \text{si } i \neq j \\ 0 & \text{sinon} \end{cases}$$

et en déduire :

$$\mathbb{E}(N_1 N_2) = \frac{(n+1)(3n+2)}{12}$$

En déduire la covariance et le coefficient de corrélation linéaire de N_1 et N_2 .

• 2 pts :
$$\mathbb{P}([N_1=i]\cap[N_2=j])=\left\{egin{array}{ll} \dfrac{1}{n(n-1)} & \mathbf{si} \ i\neq j \\ 0 & \mathbf{si} \ i=j \end{array}
ight.$$

- \times 1 pt : cas i = j
- \times 1 pt : cas $i \neq j$
- 1 pt : $N_1 N_2$ admet une espérance car v.a.r. finie

• 5 pts:
$$\mathbb{E}(N_1 N_2) = \frac{(n+1)(3n+2)}{12}$$

× 1 pt : théorème de transfert

× 1 pt : theorems de transfert

× 1 pt :
$$\sum_{j=1}^{n} j \mathbb{P}[N_1 = i] \cap [N_2 = j]) = \sum_{\substack{j=1 \ j \neq i}}^{n} j \mathbb{P}([N_1 = i] \cap [N_2 = j])$$

× 1 pt:
$$\sum_{\substack{j=1\\j\neq i}}^{n} j \mathbb{P}([N_1=i] \cap [N_2=j]) = \frac{n(n+1)}{2} - i$$

× 2 pts : fin calcul

• 1 pt :
$$Cov(N_1, N_2) = -\frac{n+1}{12}$$

• 1 pt :
$$\rho(N_1, N_2) = \frac{\text{Cov}(N_1, N_2)}{\sigma(N_1) \ \sigma(N_2)}$$

• 1 pt :
$$\rho(N_1, N_2) = -\frac{1}{n-1}$$

- d) Exprimer enfin sous forme factorisée la variance $\mathbb{V}(N_1 + N_2)$.
 - 1 pt : $N_1 + N_2$ admet une variance
 - 1 pt : $\mathbb{V}(N_1 + N_2) = \mathbb{V}(N_1) + 2\operatorname{Cov}(N_1, N_2) + \mathbb{V}(N_2)$

• 1 pt :
$$\mathbb{V}(N_1 + N_2) = \frac{(n+1)(n-2)}{6}$$

- 3. Lois conjointe, marginales et conditionnelles des variables aléatoires X et Y
 - a) Montrer, pour tout $(i,j) \in [1,n]^2$ tel que $1 \le i < j \le n : \mathbb{P}([X=i] \cap [Y=j]) = \frac{2}{n(n-1)}$. Que valent ces probabilités sinon?
 - 2 pts : cas i < j

× 1 pt :
$$[X = i] \cap [Y = j] = ([N_1 = i] \cap [N_2 = j]) \cup ([N_1 = j] \cap [N_2 = i])$$

× 1 pt :
$$\mathbb{P}([X=i] \cap [Y=j]) = \frac{2}{n(n-1)}$$

0 si incompatibilité non citée

Démonstration par dénombrement possible.

- 1 pt : cas $i \geqslant j$ ($[X = i] \cap [Y = j] = \varnothing$)
- b) En déduire les probabilités $\mathbb{P}([Y=j])$ pour $2 \leqslant j \leqslant n$ et $\mathbb{P}([X=i])$ pour $1 \leqslant i \leqslant n-1$. (On vérifiera que les formules donnant $\mathbb{P}([Y=j])$ et $\mathbb{P}([X=i])$ restent valables si j=1 ou i=n).
 - 4 pts : loi de Y

$$\times$$
 1 pt : $Y(\Omega) = [2, n]$

$$\times$$
 1 pt : FPT sur $([X=i])_{i \in [1,n-1]}$

$$\times$$
 1 pt : $\sum_{i=1}^{n-1} \mathbb{P}([X=i] \cap [Y=j]) = \sum_{i=1}^{j-1} \mathbb{P}([X=i] \cap [Y=j])$

× 1 pt :
$$\mathbb{P}([Y=j]) = 2 \frac{j-1}{n(n-1)}$$

- 1 pt : toujours vérifié pour j = 1
- 2 pts : loi de X

$$\times$$
 1 pt : $X(\Omega) = [1, n-1]$

× 1 pt :
$$\mathbb{P}([X=i]) = 2 \frac{n-i}{n(n-1)}$$

• 1 pt : toujours vérifié pour i = n

c) Déterminer les probabilités $\mathbb{P}_{[Y=j]}([X=i])$ et $\mathbb{P}_{[X=i]}([Y=j])$ pour $1 \leq i < j \leq n$, puis reconnaître la loi de X conditionnellement à [Y=j] et la loi de Y conditionnellement à [X=i].

• 1 pt :
$$\mathbb{P}_{[Y=j]}([X=i]) = \frac{1}{j-1}$$

• 1 pt :
$$\mathbb{P}_{[X=i]}([Y=j]) = \frac{1}{n-i}$$

• 2 pts : la loi de X conditionnellement à [Y=j] est la loi $\mathcal{U}(\llbracket 1,j-1 \rrbracket)$

× 1 pt : si
$$i \geqslant j$$
, $\mathbb{P}_{[Y=j]}([X=i]) = 0$

- × 1 pt : conclusion
- 1 pt : la loi de Y conditionnellement à [X = i] est la loi $\mathcal{U}(\llbracket i + 1, n \rrbracket)$
- d) Comparer les lois des variables aléatoires n+1-X et Y. En déduire que $\mathbb{E}(n+1-X)=\mathbb{E}(Y)$ et $\mathbb{V}(n+1-X)=\mathbb{V}(Y)$, puis en déduire les expressions de $\mathbb{E}(X)$ en fonction de $\mathbb{E}(Y)$ et de $\mathbb{V}(X)$ en fonction de $\mathbb{V}(Y)$.

• 3 pts : loi de
$$n + 1 - X$$

× 1 pt :
$$(n+1-X)(\Omega) \subset [2, n[$$

$$imes$$
 2 pts : $\mathbb{P}([n+1-X=j]) = 2$ $\frac{j-1}{n(n-1)}$ (dont 1 pt pour $n+1-j \in [\![1,n-1]\!]$)

- 1 pt : n+1-X et Y ont même loi
- 1 pt : n+1-X et Y admettent une espérance car v.a.r. finies

• 1 pt :
$$\mathbb{E}(X) = n + 1 - \mathbb{E}(Y)$$

• 1 pt :
$$\mathbb{V}(X) = \mathbb{V}(Y)$$

- 4. Espérances et variances des variables aléatoires X et Y
 - a) Exprimer les espérances $\mathbb{E}(Y)$ et $\mathbb{E}(X)$ en fonction de n.

• 2 pts :
$$\mathbb{E}(Y) = \frac{2(n+1)}{3}$$

• 1 pt :
$$\mathbb{E}(X) = \frac{n+1}{3}$$

- b) Exprimer sous forme factorisée $\mathbb{E}(Y(Y-2))$, puis $\mathbb{E}(Y^2)$, $\mathbb{V}(Y)$ et $\mathbb{V}(X)$ en fonction de n.
 - 1 pt : Y^2 et Y(Y-2) admettent une espérance

• 2 pts :
$$\mathbb{E}(Y(Y-2)) = \frac{(n+1)(n+2)}{2}$$

• 1 pt :
$$\mathbb{E}(Y^2) = \frac{(n+1)(3n+2)}{6}$$

• 1 pt :
$$\mathbb{V}(Y) = \mathbb{V}(X) = \frac{n+1)(n-2)}{18}$$

5. Covariance et coefficient de corrélation linéaire des variables aléatoires X et Y

a) Vérifier : $X + Y = N_1 + N_2$.

En déduire sous forme factorisée la variance de X + Y et la covariance de X et Y.

- 1 pt : $X + Y = N_1 + N_2$
- 1 pt : $\mathbb{V}(X+Y) = \frac{(n+1)(n-2)}{18}$
- 1 pt : $Cov(X, Y) = \frac{1}{2} \left(\mathbb{V}(X + Y) \mathbb{V}(X) \mathbb{V}(Y) \right)$
- 1 pt : $Cov(X, Y) = \frac{(n+1)(n-2)}{36}$
- b) En déduire le coefficient de corrélation de X et Y.

On remarquera que le coefficient de corrélation linéaire de X et Y est indépendant de n.

• 1 pt :
$$\rho(X,Y) = \frac{1}{2}$$

Partie II

On considère deux variables aléatoires X et Y définies sur un même espace probabilisé et admettant des espérances $\mathbb{E}(X)$ et $\mathbb{E}(Y)$ et des variances $\mathbb{V}(X)$ et $\mathbb{V}(Y)$ et on suppose $\mathbb{V}(X) > 0$ (on rappelle que $\mathbb{V}(X) = 0$ si et seulement si, avec une probabilité égale à 1, X est constante). La covariance des deux variables aléatoires X et Y (que celles-ci soient discrètes ou à densité) est alors le nombre réel défini par :

$$\operatorname{Cov}(X,Y) = \mathbb{E}((X - \mathbb{E}(X)) (Y - \mathbb{E}(Y)))$$
 ou encore $\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$

- 6. Covariance des variables aléatoires X et Y
 - a) Exprimer $\text{Cov}(\lambda X + Y, \lambda X + Y)$ en fonction de $\mathbb{V}(\lambda X + Y)$ et en déduire la formule suivante pour tout nombre réel λ :

$$\mathbb{V}(\lambda X + Y) = \lambda^2 \mathbb{V}(X) + 2\lambda \operatorname{Cov}(X, Y) + \mathbb{V}(Y)$$

- 1 pt : $\lambda X + Y$ admet une variance
- 1 pt : $\mathbb{V}(\lambda X + Y) = \mathbb{V}(\lambda X) + 2 \operatorname{Cov}(\lambda X, Y) + \mathbb{V}(Y)$
- 1 pt : $\mathbb{V}(\lambda X) + 2 \operatorname{Cov}(\lambda X, Y) + \mathbb{V}(Y) = \lambda^2 \mathbb{V}(X) + 2\lambda \operatorname{Cov}(X, Y) + \mathbb{V}(Y)$
- b) En déduire : $(Cov(X,Y))^2 \leq V(X)V(Y)$.

A quelle condition nécessaire et suffisante a-t-on l'égalité : $\left(\operatorname{Cov}(X,Y)\right)^2 = \mathbb{V}(X)\mathbb{V}(Y)$?

- 1 pt : introduction de $P: \lambda \mapsto \mathbb{V}(X) \lambda^2 + 2 \operatorname{Cov}(X,Y) \lambda + \mathbb{V}(Y)$
- 1 pt : $P(\lambda) \geqslant 0$
- 1 pt : $\Delta \leqslant 0$
- 2 pts : cas d'égalité (\Rightarrow) (si égalité dans Cauchy-Schwarz, alors Y transformée affine de X p.s.)
 - $_{ imes}$ 1 pt : existence d'une unique racine de P (λ_0)
 - \times 1 pt : $\mathbb{V}(\lambda_0 X + Y) = 0 \Rightarrow \lambda_0 X + Y$ v.a.r. presque sûrement constante
- 1 pt : cas d'égalité (\Leftarrow) (si Y transformée affine de X p.s., alors on a égalité dans Cauchy-Schwarz)

7. Coefficient de corrélation linéaire des variables aléatoires X et Y

On suppose dans cette question les variances $\mathbb{V}(X)$ et $\mathbb{V}(Y)$ de X et Y strictement positives.

a) Exprimer le coefficient de corrélation linéaire ρ des variables aléatoires X et Y en fonction de $\mathrm{Cov}(X,Y)$ et des écarts-types $\sigma(X)$ et $\sigma(Y)$ des variables aléatoires X et Y et montrer que ρ appartient à [-1,+1].

Préciser de plus à quelle condition nécessaire et suffisante ρ est égal à -1 ou +1.

- 2 pts : $| \rho(X,Y) | \leq 1$
- 1 pt : cas où $\rho(X,Y) \in \{-1,1\}$
- b) Donner la valeur de ρ lorsque les variables aléatoires X et Y sont indépendantes.
 - 1 pt : $\rho(X,Y) = 0$