DM1 vA correction

Pour tout entier n supérieur ou égal à 1, on définit la fonction f_n par :

$$\forall x \in \mathbb{R}_+, \ f_n(x) = x^n + 9x^2 - 4$$

1. a) Soit $n \in \mathbb{N}^*$. Montrer que l'équation $f_n(x) = 0$ n'a qu'une seule solution strictement positive, notée u_n .

Démonstration.

- La fonction f_n est dérivable sur $[0, +\infty[$ en tant que fonction polynomiale.
- Soit $x \in \mathbb{R}_+$.

$$f_n'(x) = n x^{n-1} + 18 x > 0$$

On en déduit le tableau de variations suivant.

x	$0 u_n$	$+\infty$
Signe de $f'(x)$	0 +	
Variations de f	-4	$+\infty$

- La fonction f_n est :
 - \times continue sur $[0, +\infty[$,
 - \times strictement croissante sur $[0, +\infty[$.

Elle réalise donc une bijection de $[0, +\infty[$ sur $f_n([0, +\infty[).$ Or :

$$f_n([0, +\infty[) = [f_n(0), \lim_{x \to +\infty} f_n(x)] = [-4, +\infty[$$

- Comme $0 \in [-4, +\infty[$, alors 0 admet un unique antécédent $u_n \in [0, +\infty[$ par la fonction f_n .
- Enfin, comme $f_n(0) = -4 \neq 0$, on en déduit : $u_n \neq 0$.

L'équation $f_n(x) = 0$ admet donc une unique solution strictement positive (notée u_n).

Commentaire

- L'énoncé débute avec la quantification de la variable n suivante : « Soit $n \in \mathbb{N}^*$ ». Les propositions démontrées après l'introduction de cette variable sont donc démontrées **pour tout** $n \in \mathbb{N}^*$ (aucune autre condition sur la variable n n'apparaît dans l'énoncé). C'est le cas de cette question mais aussi des questions 2.a (où l'on considère f_n et f_{n+1}) et 2.b) (où l'on considère la quantité $f_n(u_{n+1})$).
- En particulier, dans cette question, on démontre qu'à **tout** $n \in \mathbb{N}^*$ on peut associer une valeur u_n . C'est donc une suite $(u_n)_{n \in \mathbb{N}^*}$ qu'on définit ici et pas seulement une unique quantité u_n .

b) Calculer u_1 et u_2 .

Démonstration.

Par définition, u₁ est l'unique solution strictement positive de l'équation f₁(x) = 0 où f₁ est la fonction f₁: x → x + 9x² - 4. Notons P(X) = 9X² + X - 4 le polynôme correspondant.
Ce polynôme de degré 2 admet pour discriminant : Δ = 1 - 4 × (-4) × 9 = 1 + 144 = 145.
Ainsi, P admet deux racines :

$$x_1 = \frac{-1 + \sqrt{145}}{18} > 0$$
 et $x_2 = \frac{-1 - \sqrt{145}}{18} < 0$

En effet, $\sqrt{145} > \sqrt{144} = 12$.

On en déduit :
$$u_1 = \frac{-1 + \sqrt{145}}{18}$$
.

• Par définition, u_2 est l'unique solution strictement positive de l'équation $f_2(x) = 0$ où f_2 est la fonction $f_2: x \mapsto x^2 + 9x^2 - 4$. Notons $Q(X) = 10X^2 - 4$ le polynôme correspondant. On remarque:

$$Q(X) = (\sqrt{10}X)^2 - 2^2 = (\sqrt{10}X - 2)(\sqrt{10}X + 2)$$

Ainsi, Q a pour racines :

$$x_1=\frac{2}{\sqrt{10}}>0 \qquad \text{et} \qquad x_2=\frac{-2}{\sqrt{10}}<0$$
 On en déduit : $u_2=\frac{2}{\sqrt{10}}$.

c) Vérifier : $\forall n \in \mathbb{N}^*, \ u_n \in \left]0, \frac{2}{3}\right[.$

Démonstration.

Soit $n \in \mathbb{N}^*$.

• Remarquons tout d'abord :

$$f_n(0) = -4 < 0,$$

$$\times f_n(u_n) = 0,$$

$$\times f_n\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^n + 9\left(\frac{2}{3}\right)^2 - 4 = \left(\frac{2}{3}\right)^n > 0.$$

On a donc :
$$f_n(0) < f_n(u_n) < f_n\left(\frac{2}{3}\right)$$
.

• Or, d'après le théorème de la bijection, la fonction $f_n^{-1}: [-1, +\infty[\to [0, +\infty[$ est strictement croissante. En appliquant f_n^{-1} de part et d'autre de l'inégalité, on obtient :

$$f_n^{-1}(f_n(0)) < f_n^{-1}(0) < f_n^{-1}(f_n(\frac{2}{3}))$$

11

11

11

0

12

13

On a bien démontré :
$$\forall n \in \mathbb{N}^*, u_n \in \left]0, \frac{2}{3}\right[.$$

Mathématiques

2. a) Montrer que, pour tout x élément de]0,1[, on a : $f_{n+1}(x) < f_n(x)$.

Démonstration.

Soit $n \in \mathbb{N}^*$ et $x \in]0,1[$.

$$f_{n+1}(x) - f_n(x) = (x^{n+1} + 9x^2 - 4) - (x^n + 9x^2 - 4) = x^{n+1} + 9x^2 - 4 - x^n - 9x^2 + 4$$
$$= x^{n+1} - x^n = x^n (x - 1)$$

Or:

- \times comme 0 < x < 1 alors x 1 < 0.
- × comme 0 < x < 1, on obtient de plus : $x^n > 0$.

On en déduit :
$$\forall x \in]0, 1[, f_{n+1}(x) - f_n(x) < 0.$$

b) En déduire le signe de $f_n(u_{n+1})$, puis les variations de la suite (u_n) .

Démonstration.

• Soit $n \in \mathbb{N}^*$. D'après la question 1.c:

$$0 < u_{n+1} < \frac{2}{3} < 1$$

• En appliquant la formule de la question précédente en $x = u_{n+1} \in]0,1[$, on obtient :

$$f_n(u_{n+1}) > f_{n+1}(u_{n+1})$$

$$0 (par définition)$$

$$f_n(u_{n+1}) > 0$$

• Or $f_n(u_n) = 0$. On en déduit : $f_n(u_{n+1}) > f_n(u_n)$.

Par application de la fonction f_n^{-1} , strictement croissante sur $[-1, +\infty[$, on obtient : $u_{n+1} > u_n$.

Ainsi,
$$(u_n)$$
 est strictement croissante.

Commentaire

• Cet exercice consiste en l'étude de la suite (u_n) . On parle ici de « suite implicite » car on n'a pas accès à la définition explicite de la suite (u_n) mais simplement à la propriété qui permet de définir chacun de ses termes, à savoir :

Pour tout $n \in \mathbb{N}^*$, u_n est l'unique solution de l'équation $f_n(x) = 0$ sur $]0, +\infty[$

On comprend alors que l'étude de (u_n) va passer par l'étude des propriétés de la fonction f_n .

- De cette définition, on tire la propriété : $\forall m \in \mathbb{N}^*, \ f_m(u_m) = 0$. Cette propriété est au cœur de l'étude de la suite implicite (v_n) . On l'utilise dans cette question à la fois pour m = n et pour m = n + 1.
- Comme la suite (u_n) est définie de manière implicite, on n'étudie pas la monotonie de (u_n) à l'aide de la différence $u_{n+1} u_n$. Il est par contre très classique de passer par l'inégalité :

$$f_n(u_{n+1}) > f_n(u_n)$$

et de conclure : $u_{n+1} > u_n$ à l'aide d'une propriété de f_n .

c) Montrer que la suite (u_n) est convergente. On note ℓ sa limite.

Démonstration.

D'après les questions précédentes, la suite (u_n) est :

- × croissante,
- \times majorée par $\frac{2}{3}$.

On en déduit que la suite (u_n) est convergente et que sa limite ℓ est telle que : $0 \le \ell \le \frac{2}{3}$.

3. a) Déterminer la limite de u_n^n lorsque n tend vers $+\infty$.

Démonstration.

• Soit $n \in \mathbb{N}^*$. D'après la question 1.c): $0 < u_n < \frac{2}{3}$. La fonction élévation à la puissance n étant strictement croissante sur $[0, +\infty[$, on en déduit :

$$0 < u_n^n < \left(\frac{2}{3}\right)^n$$

- Or :
 - $\times \lim_{n \to +\infty} 0 = 0,$

$$\times \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0 \ (\operatorname{car} \ \frac{2}{3} \in \]-1,1[).$$

Ainsi, par le théorème d'encadrement, la suite (u_n^n) est convergente et de limite 0.

b) Donner enfin la valeur de ℓ .

Démonstration.

• Soit $n \in \mathbb{N}^*$. Par définition de $u_n : f_n(u_n) = 0$. Ainsi : $u_n^n + 9 u_n^2 - 4 = 0$ ou encore :

$$9\,{u_n}^2 = 4 - {u_n}^n$$

- Or :
 - $\times \lim_{n \to +\infty} 9 u_n^2 = 9 \ell^2 \operatorname{car}(u_n) \text{ converge vers } \ell.$
 - $\times \lim_{n \to +\infty} 4 u_n^n = 4 \operatorname{car}(u_n^n) \operatorname{converge} \operatorname{vers} 0.$

On en déduit : $9 \ell^2 = 4$. Enfin :

$$\begin{array}{lll} 9\,\ell^2=4 & \Leftrightarrow & \ell^2=\frac{4}{9} \\ & \Leftrightarrow & \ell=\sqrt{\frac{4}{9}}=\frac{\sqrt{4}}{\sqrt{9}}=\frac{2}{3} & \text{OU} & \ell=-\sqrt{\frac{4}{9}}=-\frac{2}{3} \end{array}$$

Comme $\ell \geqslant 0$, on en déduit que (u_n) converge vers $\ell = \frac{2}{3}$.

Commentaire

C'est encore une fois la propriété de définition des termes de la suite (u_n) qui est utilisée ici $(\forall n \in \mathbb{N}^*, f_n(u_n) = 0)$. On insiste sur le fait que cette propriété est fondamentale pour l'étude de la suite implicite (u_n) .

4. Montrer que la série de terme général $\frac{2}{3} - u_n$ est convergente.

Démonstration.

• Soit $n \in \mathbb{N}^*$. Comme $f_n(u_n) = 0$, on a:

$$u_n^n = 4 - 9u_n^2 = (2 - 3u_n)(2 + 3u_n) = 3\left(\frac{2}{3} - u_n\right)(2 + 3u_n)$$

On en déduit :

$$\frac{2}{3} - u_n = \frac{1}{3} \frac{u_n^n}{2 + 3u_n}$$

• D'après la question 3.a) : $0 \le u_n{}^n \le \left(\frac{2}{3}\right)^n$.

D'autre part, comme $u_n \geqslant 0$ alors $2 + 3u_n \geqslant 2$ et ainsi : $0 \leqslant \frac{1}{2 + 3u_n} \leqslant \frac{1}{2}$. On en déduit, en multipliant ces inégalités membre à membre :

 $0 \leqslant \frac{1}{3} \frac{u_n^n}{2+3u_n} \leqslant \frac{1}{3} \frac{1}{2} \left(\frac{2}{3}\right)^n$

$$\frac{2}{3} - u_n$$

• On a alors :

 $\times \forall n \in \mathbb{N}, \ 0 \leqslant \frac{2}{3} - u_n \leqslant \frac{1}{6} \left(\frac{2}{3}\right)^n$

× la série $\sum \left(\frac{2}{3}\right)^n$ est une série géométrique de raison $\frac{2}{3} \in]-1,1[$. Elle est donc convergente et $\sum \frac{1}{6} \left(\frac{2}{3}\right)^n$ aussi.

(on ne change pas la nature d'une série en multipliant son terme général par $\frac{1}{6} \neq 0$)

Par critère de comparaison des séries à termes positifs, la série $\sum \left(\frac{2}{3} - u_n\right)$ est convergente.

Commentaire

On utilise encore et toujours, en début de question, la propriété de définition des termes de la suite (u_n) , à savoir : $\forall n \in \mathbb{N}^*$, $f_n(u_n) = 0$.